
Editor: Costas Andreopoulos

2

GENIE Physics & User Manual

8th June 2021 - Version v3.0.0b1

Copyright © 2003 - 2018, The GENIE Collaboration

For enquiries:
Dr Costas Andreopoulos, University of Liverpool & STFC Rutherford Appleton Laboratory
E-Mail: costas.andreopoulos@stfc.ac.uk
Tel: +44-(0)7540 847333 (Mobile) | 44-(0)1235-445091 (RAL) | +44-(0)1517-943201 (Liverpool)

Authors

Part I/ Chapters 2, 3:
Luis Alvarez-Ruso (IFIC Valencia), Costas Andreopoulos (Liverpool & STFC/RAL), Chris Barry (Liverpool),
Francis Bench (Liverpool), Steve Dennis (Liverpool), Steve Dytman (Pittsburgh), Hugh Gallagher (Tufts), Robert
Hatcher (Fermilab), Libo Yang (Pittsburgh), Rhiannon Jones (Liverpool), Igor Kakorin (JINR), Konstantin
Kuzmin (JINR), Anselmo Meregaglia (Bordeaux, CNRS/IN2P3), Donna Naples (Pittsburgh), Vadim Naumov
(JINR), Gabriel Perdue (Fermilab), Marco Roda (Liverpool), Jeremy Wolcott (Tufts), Julia Tena-Vidal (Liver-
pool), and Julia Yarba (Fermilab).

Part II / Chapter 4:
Costas Andreopoulos (Liverpool & STFC/RAL), and Marco Roda (Liverpool)

Part II / Chapter 5:
Costas Andreopoulos (Liverpool & STFC/RAL), Robert Hatcher (Fermilab), Gabriel Perdue (Fermilab), Marco
Roda (Liverpool), and Julia Yarba (Fermilab).

Part II / Chapter 6:
Costas Andreopoulos (Liverpool & STFC/RAL), Andy Buckley (Glasgow), Anselmo Meregaglia (Bordeaux,
CNRS/IN2P3), Marco Roda (Liverpool), and Holger Schulz (Durham IPPP / Fermilab).

Part III / Chapters 7, 8, 9:
Costas Andreopoulos (Liverpool & STFC/RAL), and Robert Hatcher (Fermilab)

Part IV / Chapter 10:
Joshua Berger (Winscosin), Yanou Cui (UC Riverside), Lina Necib (Caltech), Yun-Tse Tsai (SLAC), and
Yue Zhao (Stanford)

Part IV / Chapter: 11:
Costas Andreopoulos (Liverpool & STFC/RAL), and Michel Sorel (IFIC Valencia)

Part IV / Chapter 12:
Jeremy Hewes (Cincinatti), and Georgia Karagiorgi (Columbia)

Part V / Chapter: 15:
Marco Roda (Liverpool)

Part V / Chapter: 16:
Marco Roda (Liverpool)

3

4

Part V / Chapter: 17:
Costas Andreopoulos (Liverpool & STFC/RAL), James Dobson (UCL), Steve Dytman (Pittsburgh), and Hugh
Gallagher (Tufts)

Contents

1 Introduction 17
1.1 GENIE project overview . 17
1.2 Neutrino Interaction Simulation: Challenges and Significance 18

I Neutrino Interaction Physics Modeling 21

2 Physics Modeling Elements 23
2.1 Introduction . 23
2.2 Simulation of initial nuclear state dynamics . 23

2.2.1 Overview of nuclear models implemented in GENIE 23
2.2.1.1 Fermi Gas model . 23
2.2.1.2 Bodek - Ritchie (Fermi Gas with short-range correlations) model 23

2.3 Neutrino cross-section calculation scattering off nucleons and nuclei 24
2.3.1 Charged-current quasi-elastic scattering . 24

2.3.1.1 Llewellyn-Smith model . 25
2.3.1.2 Smith-Moniz model . 25
2.3.1.3 Nieves model . 25

2.3.2 Neutral-current elastic scattering . 25
2.3.2.1 Ahrens model . 25

2.3.3 Baryon production of resonances . 25
2.3.3.1 Rein-Sehgal model . 25
2.3.3.2 Berger-Sehgal model . 26
2.3.3.3 Kuzmin-Lyubushkin-Naumov model . 26

2.3.4 Multinucleon processes . 26
2.3.4.1 Empirical GENIE model . 26
2.3.4.2 Nieves model . 26

2.3.5 Non-resonance inelastic scattering . 26
2.3.5.1 Bodek - Yang model . 26

2.3.6 Strangeness production . 27
2.3.7 Charm production . 27
2.3.8 Coherent production of mesons . 27

2.3.8.1 Rein-Sehgal model . 27
2.3.9 Diffractive production of mesons . 27
2.3.10 Neutrino-electron elastic scattering and inverse muon decay 27
2.3.11 Beyond standard model interactions . 27

2.3.11.1 Dark neutrinos . 27

5

6 CONTENTS

2.4 Neutrino-induced hadronization . 28
2.4.1 Introduction . 28
2.4.2 Survey of measurements . 28
2.4.3 Overview of hadronization models implemented in GENIE 29
2.4.4 Empirical AGKY 2018 model for low-mass hadronization 29

2.4.4.1 Simulation strategy . 29
2.4.4.1.1 Low-W model: Particle content 30
2.4.4.1.2 Low-W model: Hadron system decay 31

2.4.4.2 Key data and theoretical assumptions built into the model 32
2.4.4.3 Model systematics . 32
2.4.4.4 Evaluation of model strengths and weaknesses 32
2.4.4.5 Discussion of limitations and opportunities for model improvements . . . 32

2.4.5 Empirical hadronization model for charm production 34
2.4.5.1 Simulation strategy . 34
2.4.5.2 Key data and theoretical assumptions built into the model 34
2.4.5.3 Model systematics . 34
2.4.5.4 Evaluation of model strengths and weaknesses 34
2.4.5.5 Discussion of limitations and opportunities for model improvements . . . 34

2.4.6 PYTHIA6 . 34
2.4.6.1 Interfacing GENIE and PYTHIA6 . 34
2.4.6.2 Model systematics . 34

2.4.7 Hybrid models . 36
2.4.8 Characteristic data/MC comparisons . 36

2.5 Intranuclear hadron transport modeling . 43
2.5.1 Introduction . 43
2.5.2 Survey of models and measurements . 43

2.5.2.1 Survey of models . 44
2.5.2.2 Systematics of hadron-nucleus data . 45
2.5.2.3 INC models . 47

2.5.3 Overview of hadron transport models implemented in GENIE 48
2.5.4 INTRANUKE hA 2018 . 49

2.5.4.1 Simulation strategy . 49
2.5.4.2 Key data and theoretical assumptions built into the model 51
2.5.4.3 Model systematics . 51
2.5.4.4 Evaluation of model strengths and weaknesses 51
2.5.4.5 Summary of changes from previous versions of INTRANUKE hA 51
2.5.4.6 Discussion of limitations and opportunities for model improvements . . . 51

2.5.5 INTRANUKE hN 2018 . 51
2.5.5.1 Simulation strategy . 51
2.5.5.2 Key data and theoretical assumptions built into the model 52
2.5.5.3 Model systematics . 52
2.5.5.4 Evaluation of model strengths and weaknesses 52
2.5.5.5 Summary of changes from previous versions of INTRANUKE hN 52
2.5.5.6 Discussion of limitations and opportunities for model improvements . . . 52

2.5.6 Characteristic data/MC distributions and comparison of hadron transport models
in GENIE . 52

2.6 Summary . 52

CONTENTS 7

3 Comprehensive Model Configurations and Tunes 55
3.1 Introduction . 55
3.2 Naming conventions . 55

3.2.1 Comprehensive model configuration naming convention 55
3.2.2 Tune naming convention . 56

3.3 GENIE comprehensive model configurations . 56
3.3.1 Overview . 56
3.3.2 Comprehensive model construction . 56

3.3.2.1 Construction of G18_01* series . 56
3.3.2.2 Construction of G18_02* series . 56
3.3.2.3 Construction of G18_10* series . 56

3.3.3 Critical comparison of comprehensive model configurations 56
3.4 GENIE tunes . 58

3.4.1 Overview . 59
3.4.2 General strategy for free-nucleon cross-section model tuning 63

3.4.2.1 Modeling the transition region . 63
3.4.3 General strategy for nuclear cross-section model tuning 65
3.4.4 Discussion of tunes . 65

3.4.4.1 Discussion of G18_01* tunes . 65
3.4.4.2 Discussion of G18_02* tunes . 65
3.4.4.3 Discussion of G18_10* tunes . 65
3.4.4.4 Comparison of GENIE tunes . 65

3.5 Critical evaluation of GENIE comprehensive models and tunes - Opportunities for im-
provement and future work . 65

3.6 GENIE comprehensive model and tune recommendations 65
3.7 BSM CMC and tunes . 65

3.7.1 Dark Neutrino tunes . 65
3.7.2 Boosted Dark Matter tunes . 65

II Software Framework of the GENIE Suite of Products 67

4 The GENIE Generator 69
4.1 Introduction . 69
4.2 Source code, configuration and data file organisation . 69
4.3 Core framework . 71

4.3.1 Algorithms . 71
4.3.1.1 Key concepts . 71
4.3.1.2 Algorithm configuration . 72
4.3.1.3 Algorithm nesting . 72
4.3.1.4 The Algorithm interface . 72

4.3.2 Registry . 74
4.3.3 Algorithm configuration system . 74

4.3.3.1 Special XML files and organization of the config directory 75
4.3.4 Message logging system . 75

4.4 Event generation framework . 76
4.4.1 Data structures: Particles, Events and Interactions 76

4.4.1.1 System of units . 76
4.4.1.2 Particles . 77

8 CONTENTS

4.4.1.3 Events . 77
4.4.1.3.1 Logical structure of events . 78

4.4.1.4 Interactions . 80
4.4.2 Event generation processing units: Modules, Threads and Drivers 80

4.4.2.1 Event generation modules . 81
4.4.2.2 Event generation threads (Event generators) 81
4.4.2.3 Event generation drivers . 82

4.5 Output event n-tuples . 83

5 The GENIE Comparisons 85
5.1 Introduction . 85
5.2 Source code, configuration and data file organisation . 85
5.3 The Comparisons software framework . 85

5.3.1 Overview . 85
5.3.1.1 General Plotting App . 85

5.3.2 The Plexus . 85
5.3.2.1 Plexus configuration . 86

5.3.3 Naming conventions . 88
5.3.4 Describing datasets . 89

5.3.4.1 The GExDataI interface . 89
5.3.4.2 GLinearDataI extension to the GExDataI interface 89
5.3.4.3 GMultipleData extension to the GLinearDataI interface 90

5.3.5 Describing GENIE predictions . 91
5.3.5.1 The GPredictionI interface . 91
5.3.5.2 GLinearPredictionI extension to the GPredictionI interface 92
5.3.5.3 GMultiplePrediction extension to the GLinearPredictionI interface 93

5.3.6 Data representation model . 93
5.3.6.1 GErrors . 93
5.3.6.2 GDataMap and GPredictionMap . 95
5.3.6.3 Degrees of freedom mapping in storages 95
5.3.6.4 Data and Prediction Storages and their automatic plots 95
5.3.6.5 ExCovarianceReader . 96

5.4 Implemented data/MC comparisons . 97
5.5 Caveats and opportunities for improvement . 97

6 The GENIE Tuning 99
6.1 Introduction . 99
6.2 The GENIE / Professor interface . 99

6.2.1 xml configuration templates . 99
6.3 The Professor tuning tool . 100
6.4 Tune History . 100

III Using the GENIE Generator in Neutrino Mode 101

7 Generating Neutrino Event Samples 103
7.1 Introduction . 103
7.2 Preparing event generation inputs: Cross-section splines 103

7.2.1 The XML cross section splines file format . 103
7.2.2 Downloading pre-computed cross section splines 104

CONTENTS 9

7.2.3 Generating cross section splines . 105
7.2.3.1 The gmkspl spline generation utility . 105
7.2.3.2 The gspladd spline merging utility . 107

7.2.4 Re-using splines for modified GENIE configurations 109
7.2.5 Using cross section splines in your analysis program 109

7.2.5.1 The gspl2root spline file conversion utility 109
7.3 Simple event generation cases . 111

7.3.1 The gevgen generic event generation application 111
7.4 Obtaining special samples . 114

7.4.1 Switching reaction modes on/off . 114
7.4.2 Event cherry-picking . 115

7.4.2.1 The gevpick cherry-picking utility . 115
7.4.3 The Event Library Interface Generator . 116

7.4.3.1 Using the generator . 117
7.4.3.2 Format of the library file . 117

8 Using a Realistic Flux and Detector Geometry 119
8.1 Introduction . 119
8.2 Components for building customized event generation applications 119

8.2.1 The flux driver interface . 120
8.2.2 The geometry navigation driver interface . 121
8.2.3 Setting-up GENIE MC jobs using fluxes and geometries 121

8.3 Built-in flux drivers . 122
8.3.1 JPARC neutrino flux driver specifics . 123
8.3.2 NuMI neutrino flux driver specific . 123
8.3.3 FLUKA and BGLRS atmospheric flux driver specifics 123
8.3.4 Generic histogram-based flux specifics . 124
8.3.5 Generic ntuple-based flux specifics . 124

8.4 Built-in geometry navigation drivers . 127
8.4.1 ROOT geometry navigation driver specifics . 127

8.4.1.1 Defining units . 128
8.4.1.2 Defining a fiducial volume . 128

8.5 Built-in specialized event generation applications . 128
8.5.1 Event generation application for the T2K experiment 129
8.5.2 Event generation application for Fermilab neutrino experiments 135
8.5.3 Event generation application for atmospheric neutrinos 139

9 Analyzing Output Event Samples 145
9.1 Introduction . 145
9.2 Printing-out events . 145

9.2.1 The gevdump utility . 145
9.3 Event loop skeleton program . 146
9.4 Extracting event information . 148
9.5 Event tree conversions . 150

9.5.1 The gntpc ntuple conversion utility . 151
9.5.2 Formats supported by gntpc . 153

9.5.2.1 The ‘gst’ format . 153
9.5.2.2 The ‘gxml’ format . 156
9.5.2.3 The ‘rootracker’ formats . 157

10 CONTENTS

9.5.2.4 The ‘tracker’ formats . 161
9.6 Units . 163

IV GENIE Non-Neutrino Event Generation Modes 165

10 Boosted Dark Matter 167
10.1 Introduction . 167
10.2 Model Description . 167

10.2.1 Overview . 167
10.2.2 Cross-section Determination . 168

10.3 Usage . 169
10.3.1 The gmkspl_dm spline generation utility . 169
10.3.2 The gevgen_dm dark matter event generation utility 171
10.3.3 The gevdump_dm utility . 174

10.4 Caveats and opportunities for further improvements . 175

11 Nucleon decay 177
11.1 Introduction . 177
11.2 Model Description . 177
11.3 Usage . 177

11.3.1 The gevgen_ndcy event generation application . 177
11.4 Caveats and opportunities for further improvements . 180

12 Neutron-Antineutron Oscillation 181
12.1 Model description . 181

12.1.1 The initial state . 182
12.1.2 Simulating the oscillating neutron . 182
12.1.3 Simulating the annihilating nucleon . 183
12.1.4 Simulating the remnant nucleus . 183
12.1.5 Simulating annihilation products . 183
12.1.6 Final state interactions . 184

12.2 Simulation results . 184
12.2.1 Super-Kamiokande comparison . 186

12.3 Discussion . 186
12.3.1 Branching ratio corrections . 186
12.3.2 Validating the phase space approximation . 187

12.4 Usage . 188
12.4.1 The gevgen_nnbarosc event generation application 188

12.5 Future work . 190
12.5.1 Crystal Barrel data and new branching ratios . 190

12.6 Conclusions . 190

13 Hadron (and Photon) - Nucleus Scattering 193
13.1 Model description . 193
13.2 Usage . 193

13.2.1 The gevgen_hadron event generation application 193

14 Charged Lepton - Nucleus Scattering 197

CONTENTS 11

V Using the GENIE Comparisons and Tuning Products 199

15 Model Characterization using the GENIE Comparisons 201
15.1 Introduction . 201

16 Model Fits using the GENIE Tuning and Professor 203
16.1 Introduction . 203

17 Supporting Tools / Event Reweighting 205
17.1 Introduction and important caveats . 205
17.2 Formulation of problem . 205
17.3 List (partial) of reweightable systematic parameters in GENIE 206
17.4 Propagating neutrino-cross section uncertainties . 209
17.5 Propagating hadronization and resonance decay uncertainties 210

17.5.0.1 Formation-zone uncertainties . 211
17.5.0.2 Pion angular distribution uncertainties in ∆→ Nπ decay 212
17.5.0.3 Branching ratio uncertainties . 213

17.6 Propagating intranuclear hadron transport uncertainties 214
17.6.0.1 Reweighting the rescattering rate . 216
17.6.0.2 Reweighting the rescattering fates . 221
17.6.0.3 Computing event weights . 222
17.6.0.4 Computing penalty terms . 223
17.6.0.5 Unitarity expectations . 224

17.7 Event reweighting applications . 226
17.7.1 Built-in applications . 226

17.7.1.1 The grwght1scan utility . 226
17.7.2 Writing a new reweighting application . 227

17.8 Adding a new event reweighting class . 229

VI Appendices 231

A Copyright Notice and Citation Guidelines 233
A.1 Guidelines for Fair Academic Use . 233
A.2 Main references . 233

B Downloading & Installing GENIE 235
B.1 Understanding the versioning scheme . 235
B.2 Obtaining the source code . 236
B.3 3rd Party Sofwtare . 236
B.4 Preparing your environment . 237
B.5 Configuring GENIE . 238
B.6 Building GENIE . 240
B.7 Performing simple post-installation tests . 240

C Special Topics, FAQs and Troubleshooting 243
C.1 Installation / Versioning . 243

C.1.1 Making user-code conditional on the GENIE version 243
C.2 Software framework . 243

C.2.1 Calling GENIE algorithms directly . 243

12 CONTENTS

C.3 Particle decays . 245
C.3.1 Deciding which particles to decay . 245
C.3.2 Setting particle decay flags . 245
C.3.3 Inhibiting decay channels . 245

C.4 Numerical algorithms . 246
C.4.1 Random number periodicity . 246
C.4.2 Setting required numerical accurancy . 246

D Common Status and Particle Codes 247
D.1 Status codes . 247
D.2 Particle codes . 247
D.3 Baryon resonance codes . 249
D.4 Ion codes . 249
D.5 GENIE pseudo-particle codes . 249

E 3rd Party Softw. Installation Instructions 251
E.1 LOG4CPP . 251
E.2 LIBXML2 . 252
E.3 LHAPDF5 . 252
E.4 PYTHIA6 . 253
E.5 ROOT . 253

F Finding More Information 255
F.1 The GENIE web page . 255
F.2 Subscribing at the GENIE mailing lists . 255
F.3 The GENIE document database (DocDB) . 255
F.4 The GENIE issue tracker . 256
F.5 The GENIE Generator repository browser . 256
F.6 The GENIE doxygen documentation . 256

G Glossary 257

Bibliography 261

Preface

GENIE [1] is a suite of products for the experimental neutrino physics community. This suite includes i)
a modern software framework for implementing neutrino event generators, a state-of-the-art comprehen-
sive physics model and tools to support neutrino interaction simulation for realistic experimental setups
(aka the “Generator”), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and
software to produce a comprehensive set of data/MC comparisons (aka the “Comparisons”), and iii) a gen-
erator tuning framework and fitting applications (aka the “Tuning”). These products come with different
licenses. The Generator is an open-source product, whereas the Comparisons and the Tuning products
are, currently, not available for a public release.

This book provides the definite guide for GENIE: It presents the software architecture and a detailed
description of its physics model and official tunes.

13

14 CONTENTS

Key

• Using normal, light, upright black font:

– GENIE namespaces: genie::cmp::nm

– External packages: e.g. ROOT, PYTHIA6

– Object names: e.g. flux_histogram

• Using normal, light, italic, black font:

– Class names: e.g. GHepRecord

– GENIE application / library names: e.g. gT2Kevgen, gevdump

– Filenames and paths (in single quotes): e.g. ‘/data/flux/atmospheric/bglrs/numu.root’

– URLs: e.g. http://www.genie-mc.org

– Function arguments: e.g. file_option

– String literals (in double quotes): e.g. “G16_02a_01_000 ”

• Using normal, light, italic, blue font:

– Function and class method signatures: e.g. virtual const Registry & Metadata(void) const

• Using normal, light, upright, brown font:

– GENIE algorithm configuration variables: e.g. AxialMass

• Using small, bold, upright black fonts:

– Typed-in commands: e.g. $ gevdump -f /data/file.ghep.root

– Fragments of above (in single quotes): eg. ‘-n 100’

– Environmnental variables: e.g. $GENIE

Notes:

• A leading $, & or % in typed-in commands represent your command shell prompt.
Don’t type that in.

15

16 CONTENTS

Chapter 1

Introduction

1.1 GENIE project overview

Over the last few years, throughout the field of high energy physics (HEP), we have witnessed an enormous
effort committed to migrating many popular procedural Monte Carlo Generators into their C++ equiva-
lents designed using object-oriented methodologies. Well-known examples are the GEANT [2], HERWIG
[3] and PYTHIA [4] Monte Carlo Generators. This reflects a radical change in our approach to scientific
computing. Along with the eternal requirement that the modeled physics be correct and extensively
validated with external data, the evolving nature of computing in HEP has introduced new requirements.
These requirements relate to the way large HEP software systems are developed and maintained, by wide
geographically-spread collaborations over a typical time-span of \sim25 years during which they will
undergo many (initially unforeseen) extensions and modifications to accommodate new needs. This puts
a stress on software qualities such re-usability, maintainability, robustness, modularity and extensibility.
Software engineering provides many well proven techniques to address these requirements and thereby
improve the quality and lifetime of HEP software. In neutrino physics, the requirements for a new physics
generator are more challenging for three reasons: the lack of a ‘canonical’ procedural generator, theoreti-
cal and phenomenological challenges in modeling few-GeV neutrino interactions, and the rapidly evolving
experimental and theoretical landscape.

The long-term goal of this project is for GENIE to become a ‘canonical’ neutrino event generator whose
validity will extend to all nuclear targets and neutrino flavors over a wide spectrum of energies ranging
from ∼1 MeV to ∼1 PeV. Currently, emphasis is given to the few-GeV energy range, the challenging
boundary between the non-perturbative and perturbative regimes which is relevant for the current and
near future long-baseline precision neutrino experiments using accelerator-made beams. The present
version provides comprehensive neutrino interaction modelling in the energy from, approximately, ∼100
MeV to a few hundred GeV.

GENIE1 is a ROOT-based [5] Neutrino MC Generator. It was designed using object-oriented method-
ologies and developed entirely in C++ over a period of more than three years, from 2004 to 2007. Its first
official physics release (v2.0.0) was made available on August 2007. GENIE has already being adopted
by the majority of neutrino experiments, including those as the JPARC and NuMI neutrino beamlines,
and will be an important physics tool for the exploitation of the world accelerator neutrino program.

The project is supported by a group of physicists from all major neutrino experiments operating in
this energy range, establishing GENIE as a major HEP event generator collaboration. Many members

1GENIE stands for Generates Events for Neutrino Interaction Experiments

17

18 CHAPTER 1. INTRODUCTION

of the GENIE collaboration have extensive experience in developing and maintaining the legacy Monte
Carlo Generators that GENIE strives to replace, which guarantees knowledge exchange and continuation.
The default set of physics models in GENIE have adiabatically evolved from those in the NEUGEN [6]
package, which was used as the event generator by numerous experiments over the past decade.

1.2 Neutrino Interaction Simulation: Challenges and Significance

Neutrinos have played an important role in particle physics since their discovery half a century ago. They
have been used to elucidate the structure of the electroweak symmetry groups, to illuminate the quark
nature of hadrons, and to confirm our models of astrophysical phenomena. With the discovery of neutrino
oscillations using atmospheric, solar, accelerator, and reactor neutrinos, these elusive particles now take
center stage as the objects of study themselves. Precision measurements of the lepton mixing matrix,
the search for lepton charge-parity (CP) violation, and the determination of the neutrino masses and
hierarchy will be major efforts in HEP for several decades. The cost of this next generation of experiments
will be significant, typically tens to hundreds of millions of dollars. A comprehensive, thoroughly tested
neutrino event generator package plays an important role in the design and execution of these experiments,
since this tool is used to evaluate the feasibility of proposed projects and estimate their physics impact,
make decisions about detector design and optimization, analyze the collected data samples, and evaluate
systematic errors. With the advent of high-intensity neutrino beams from proton colliders, we have
entered a new era of high-statistics, precision neutrino experiments which will require a new level of
accuracy in our knowledge, and simulation, of neutrino interaction physics.

While object-oriented physics generators in other fields of high energy physics were evolved from
well established legacy systems, in neutrino physics no such ‘canonical’ MC exists. Until quite recently,
most neutrino experiments developed their own neutrino event generators. This was due partly to the
wide variety of energies, nuclear targets, detectors, and physics topics being simulated. Without doubt
these generators, the most commonly used of which have been GENEVE [7], NEUT [8], NeuGEN [6],
NUANCE [9] and NUX [10], played an important role in the design and exploration of the previous and
current generation of accelerator neutrino experiments. Tuning on the basis of unpublished data from
each group’s own experiment has not been unusual making it virtually impossible to perform a global,
independent evaluation for the state-of-the-art in neutrino interaction physics simulations. Moreover,
limited manpower and the fragility of the overextended software architectures meant that many of these
legacy physics generators were not keeping up with the latest theoretical ideas and experimental mea-
surements. A more recent development in the field has been the direct involvement of theory groups in
the development of neutrino event generators, such as the NuWRO [11] and GiBUU [12] packages, and
the inclusion of neutrino scattering in the long-established FLUKA hadron scattering package [13].

Simulating neutrino interactions in the energy range of interest to current and near-future experiments
poses significant challenges. This broad energy range bridges the perturbative and non-perturbative
pictures of the nucleon and a variety of scattering mechanisms are important. In many areas, including
elementary cross sections, hadronization models, and nuclear physics, one is required to piece together
models with different ranges of validity in order to generate events over all of the available phase space.
This inevitably introduces challenges in merging and tuning models, making sure that double counting
and discontinuities are avoided. In addition there are kinematic regimes which are outside the stated
range of validity of all available models, in which case we are left with the challenge of developing our own
models or deciding which model best extrapolates into this region. An additional fundamental problem
in this energy range is a lack of data. Most simulations have been tuned to bubble chamber data taken
in the 70’s and 80’s. Because of the limited size of the data samples (important exclusive channels might
only contain a handful of events), and the limited coverage in the space of (ν/ν,Eν , A), substantial
uncertainties exist in numerous aspects of the simulations.

1.2. NEUTRINO INTERACTION SIMULATION: CHALLENGES AND SIGNIFICANCE 19

The use cases for GENIE are also informed by the experiences of the developers and users of the
previous generation of procedural codes. Dealing with these substantial model uncertainties has been an
important analysis challenge for many recent experiments. The impact of these uncertainties on physics
analyses have been evaluated in detailed systematics studies and in some cases the models have been fit
directly to experimental data to reduce systematics. These ‘downstream’ simulation-related studies can
often be among the most challenging and time-consuming in an analysis.

To see the difficulties facing the current generation of neutrino experiments, one can look no further
than the K2K and MiniBooNE experiments. Both of these experiments have measured a substantially
different Q2 distribution for their quasielastic-like events when compared with their simulations, which
involve a standard Fermi Gas model nuclear model [14, 15]. The disagreement between nominal Monte
Carlo and data is quite large - in the lowest Q2 bin of MiniBooNE the deficit in the data is around 30%
[15]. It seems likely that the discrepancies seen by both experiments have a common origin. However the
two experiments have been able to obtain internal consistency with very different model changes - the
K2K experiment does this by eliminating the charged current (CC) coherent contribution in the Monte
Carlo [16] and the MiniBooNE experiment does this by modifying certain parameters in their Fermi Gas
model [15]. Another example of the rapidly evolving nature of this field is the recently reported excess of
low energy electron-like events by the MiniBooNE collaboration [17]. These discrepancies have generated
significant new theoretical work on these topics over the past several years [18, 19, 20, ?, 21, 22, 23, 24].
The situation is bound to become even more interesting, and complicated, in the coming decade, as new
high-statistics experiments begin taking data in this energy range. Designing a software system that can
be responsive to this rapidly evolving experimental and theoretical landscape is a major challenge.

One of the aims of this manual is to describe the ways in which the GENIE neutrino event generator
addresses these challenges. These solutions rely heavily on the power of modern software engineering,
particularly the extensibility, modularity, and flexibility of object oriented design, as well as the combined
expertise and experience of the collaboration with previous procedural codes.

20 CHAPTER 1. INTRODUCTION

Part I

Neutrino Interaction Physics Modeling

21

Chapter 2

Physics Modeling Elements

2.1 Introduction

The set of physics models used in GENIE incorporates the dominant scattering mechanisms from several
MeV to several hundred GeV and are appropriate for any neutrino flavor and target type. Over this
energy range, many different physical processes are important. These physics models can be broadly
categorized into nuclear physics models, cross section models, and hadronization models.

Substantial uncertainties exist in modeling neutrino-nucleus interactions, particularly in the few-GeV
regime which bridges the transition region between perturbative and non-perturbative descriptions of
the scattering process. For the purposes of developing an event generator this theoretical difficulty is
compounded by the empirical limitation that previous experiments often did not publish results in these
difficult kinematic regions since a theoretical interpretation was unavailable.

In physics model development for GENIE we have been forced to pay particular attention to this
‘transition region’, as for few-GeV experiments it dominates the event rate. In particular the boundaries
between regions of validity of different models need to be treated with care in order to avoid theoretical
inconsistencies, discontinuities in generated distributions, and double-counting. In this brief section we
will describe the models available in GENIE and the ways in which we combine models to cover regions
of phase space where clear theoretical or empirical guidance is lacking.

2.2 Simulation of initial nuclear state dynamics

2.2.1 Overview of nuclear models implemented in GENIE

The importance of the nuclear model depends strongly on the kinematics of the reaction. Nuclear physics
plays a large role in every aspect of neutrino scattering simulations at few-GeV energies and introduces
coupling between several aspects of the simulation.

2.2.1.1 Fermi Gas model

2.2.1.2 Bodek - Ritchie (Fermi Gas with short-range correlations) model

The relativistic Fermi gas (RFG) nuclear model is used for all processes. GENIE uses the version of
Bodek and Ritchie which has been modified to incorporate short range nucleon-nucleon correlations [25].
This is simple, yet applicable across a broad range of target atoms and neutrino energies. The best
tests of the RFG model come from electron scattering experiments [26]. At high energies, the nuclear

23

24 CHAPTER 2. PHYSICS MODELING ELEMENTS

Nucleus Binding energy (GeV) Fermi momentum (GeV)
For protons For neutrons

Li6 0.017 0.169 0.169
C12 0.025 0.221 0.221
O16 0.027 0.225 0.225
Mg24 0.032 0.235 0.235
Ar40 0.242 0.259
Ca40 0.028 0.251 0.251
Fe56 0.036 0.251 0.263
Ni58 0.036 0.257 0.263
Pb208 0.044 0.245 0.283

Table 2.1: Fermi Gas parameters used in GENIE shown for several nuclei.

model requires broad features due to shadowing and similar effects. At the lower end of the GENIE
energy range, the impulse approximation works very well and the RFG is often successful. The nuclear
medium gives the struck nucleon a momentum and average binding energy which have been determined
in electron scattering experiments. Mass densities are taken from review articles [27]. For A <20, the
modified Gaussian density parameterization is used. For heavier nuclei, the 2-parameter Woods-Saxon
density function is used. Thus, the model can be used for all nuclei. Presently, fit parameters for selected
nuclei are used with interpolations for other nuclei. All isotopes of a particular nucleus are assumed to
have the same density.

It is well known that scattering kinematics for nucleons in a nuclear environment are different from
those obtained in scattering from free nucleons. For quasi-elastic and elastic scattering, Pauli blocking is
applied as described in Sec. 2.3. For nuclear targets a nuclear modification factor is included to account
for observed differences between nuclear and free nucleon structure functions which include shadowing,
anti-shadowing, and the EMC effect [28].

...

2.3 Neutrino cross-section calculation scattering off nucleons and
nuclei

The cross section model provides the calculation of the differential and total cross sections. During event
generation the total cross section is used together with the flux to determine the energies of interacting
neutrinos. The cross sections for specific processes are then used to determine which interaction type
occurs, and the differential distributions for that interaction model are used to determine the event
kinematics. While the differential distributions must be calculated event-by-event, the total cross sections
can be pre-calculated and stored for use by many jobs sharing the same physics models. Over this
energy range neutrinos can scatter off a variety of different ‘targets’ including the nucleus (via coherent
scattering), individual nucleons, quarks within the nucleons, and atomic electrons.

2.3.1 Charged-current quasi-elastic scattering

Quasi-elastic scattering (e.g. νµ + n → µ− + p, or ν̄µ + p → µ+ + n) is a key process for oscillation
experiments due to its high rate at around 1 GeV, its simple final state topology and its elastic nature
allowing the reconstruction of the incoming neutrino energy solely from the kinematics of the observed
final state lepton. Quasi-elastic scattering is simulated by several models implemented in GENIE.

2.3. NEUTRINO CROSS-SECTION CALCULATION SCATTERING OFF NUCLEONS AND NUCLEI25

2.3.1.1 Llewellyn-Smith model

In the Llewellyn-Smith model [29] the hadronic weak current is expressed in terms of the most general
Lorentz-invariant form factors. Two are set to zero as they violate G-parity. Two vector form factors can
be related via CVC to electromagnetic form factors which are measured over a broad range of kinematics in
electron elastic scattering experiments. Several different parametrizations of these electromagnetic form
factors including Sachs [30], BBA2003 [31] and BBBA2005 [32] models are available with BBBA2005
being the default. Two form factors - the pseudo-scalar and axial vector, remain. The pseudo-scalar form
factor is assumed to have the form suggested by the partially conserved axial current (PCAC) hypothesis
[29], which leaves the axial form factor FA(Q2) as the sole remaining unknown quantity. FA(0) is well
known from measurements of neutron beta decay and the Q2 dependence of this form factor can only
be determined in neutrino experiments and has been the focus of a large amount of experimental work
over several decades. In GENIE a dipole form is assumed, with the axial vector mass mA remaining as
the sole free parameter. For nuclear targets, the struck a suppression factor is included from an analytic
calculation of the rejection factor in the Fermi Gas model, based on the simple requirement that the
momentum of the outgoing nucleon exceed the fermi momentum kF for the nucleus in question. Typical
values of kF can be found in Tab. 2.2.1.2.

2.3.1.2 Smith-Moniz model

2.3.1.3 Nieves model

2.3.2 Neutral-current elastic scattering
2.3.2.1 Ahrens model

Elastic neutral current processes are computed according to the model described by Ahrens et al. [33],
where the axial form factor is given by:

GA(Q2) =
1

2

GA(0)

(1 +Q2/M2
A)2

(1 + η). (2.1)

The adjustable parameter η includes possible isoscalar contributions to the axial current. For nuclear
targets the same reduction factor described above is used.

2.3.3 Baryon production of resonances
2.3.3.1 Rein-Sehgal model

The production of baryon resonances in neutral and charged current channels is included with the Rein-
Sehgal model [34]. This model employs the Feynman-Kislinger-Ravndal [35] model of baryon resonances,
which gives wavefunctions for the resonances as excited states of a 3-quark system in a relativistic har-
monic oscillator potential with spin-flavor symmetry. In the Rein-Sehgal paper the helicity amplitudes
for the FKR model are computed and used to construct the cross sections for neutrino-production of the
baryon resonances. From the 18 resonances of the original paper we include the 16 that are listed as
unambiguous at the latest PDG baryon tables and all resonance parameters have been updated. In our
implementation of the Rein-Sehgal model interference between neighboring resonances has been ignored.
Lepton mass terms are not included in the calculation of the differential cross section, but the effect of
the lepton mass on the phase space boundaries is taken into account. For tau neutrino charged current
interactions an overall correction factor to the total cross section is applied to account for neglected ele-
ments (pseudoscalar form factors and lepton mass terms) in the original model. The default value for the
resonance axial vector mass mA is 1.12 GeV/c2, as determined in the global fits carried out in Reference
[36].

26 CHAPTER 2. PHYSICS MODELING ELEMENTS

Resonance GENIE ID Mass (GeV) Width (GeV)
P33(1232) 1.232 0.120
S11(1535) 1.535 0.150
D13(1520) 1.520 0.120
S11(1650) 1.650 0.150
D13(1700) 1.700 0.100
D15(1675) 1.675 0.150
S31(1620) 1.620 0.150
D33(1700) 1.700 0.300
P11(1440) 1.440 0.350
P13(1720) 1.720 0.150
F15(1680) 1.680 0.130
P31(1910) 1.910 0.250
P33(1920) 1.920 0.200
F35(1905) 1.905 0.350
F37(1950) 1.950 0.300
P11(1710) 1.710 0.100
P33(1232) 0.120
S11(1535) 0.150
D13(1520) 0.120

Table 2.2: Resonance parameters used in all resonance neutrino-production models.

2.3.3.2 Berger-Sehgal model

2.3.3.3 Kuzmin-Lyubushkin-Naumov model

2.3.4 Multinucleon processes

2.3.4.1 Empirical GENIE model

2.3.4.2 Nieves model

2.3.5 Non-resonance inelastic scattering

2.3.5.1 Bodek - Yang model

Deep (and not-so-deep) inelastic scattering (DIS) is calculated in an effective leading order model using
the modifications suggested by Bodek and Yang [28] to describe scattering at low Q2. In this model
higher twist and target mass corrections are accounted for through the use of a new scaling variable and
modifications to the low Q2 parton distributions. The cross sections are computed at a fully partonic
level (the νq→lq′ cross sections are computed for all relevant sea and valence quarks). The longitudinal
structure function is taken into account using the Whitlow R (R = FL/2xF1) parameterization [37]. The
default parameter values are those given in [28], which are determined based on the GRV98 LO parton
distributions [38]. An overall scale factor of 1.032 is applied to the predictions of the Bodek-Yang model
to achieve agreement with the measured value of the neutrino cross section at high energy (100 GeV).
This factor is necessary since the Bodek-Yang model treats axial and vector form modifications identically
and would therefore not be expected to reproduce neutrino data perfectly. This overall DIS scale factor
needs to be recalculated when elements of the cross section model are changed. The same model can be
extended to low energies; it is the model used for the nonresonant processes that compete with resonances
in the few-GeV region.

2.3. NEUTRINO CROSS-SECTION CALCULATION SCATTERING OFF NUCLEONS AND NUCLEI27

2.3.6 Strangeness production

2.3.7 Charm production

2.3.8 Coherent production of mesons

Coherent scattering results in the production of forward going pions in both charged current (νµ +A→
µ− + π+ +A) and neutral current (νµ +A→ νµ + π0 +A) channels.

2.3.8.1 Rein-Sehgal model

Coherent neutrino-nucleus interactions are modeled according to the Rein-Sehgal model [39]. Since the
coherence condition requires a small momentum transfer to the target nucleus, it is a low-Q2 process which
is related via PCAC to the pion field. The Rein-Sehgal model begins from the PCAC form at Q2=0,
assumes a dipole dependence for non-zero Q2, with mA = 1.00 GeV/c2, and then calculates the relevant
pion-nucleus cross section from measured data on total and inelastic pion scattering from protons and
deuterium [40]. The GENIE implementation is using the modified PCAC formula described in a recent
revision of the Rein-Sehgal model [41] that includes lepton mass terms.

2.3.9 Diffractive production of mesons

2.3.10 Neutrino-electron elastic scattering and inverse muon decay

....

2.3.11 Beyond standard model interactions

There is growing interest from the experiments to add physics Beyond Standard Model (BSM) in the
genereators. Most of these processes requires different usage of the GENIE interfaces and therefore
dedicated apps. This is the case for example for Boosted dark matter, Nucleon decay, etc; see PartIV.
There are anyway BSM interactions that can originate from SM neutrinos. This section keep tracks of
these particular cases.

2.3.11.1 Dark neutrinos

Dark neutrinos interactions arise from an extension of the SM lagrangian adding a fourth neutrino flavours
that mixes with the SM neutrinos [42]. This extension can explain the low energy EM excess detected by
short baseline experiments. These new dark neutrinos are relatively heavy (O(100) MeV). This extension
comes with a new light neutral boson (lighter than the dark neutrino) that couples with both EM and
weak charge, although the coupling with the weak charge is considered negligible as shown from model
developmer’s fits. The new Lagrangian predicts a dark equivalent for every existing NC SM interaction.
These new interactions are not interfering with the normal interactions as they have a different final state
as they produdce the dark neutrino in the final state.

At the moment only the dominant interaction is implemented: the COH Dark (Quasi) elastic intrac-
tion, which is the dark equivalent of CEvNS. As the particle in the final state don’t have the same masses
as the initial state this is a Quasi elastic COH scattering. The implemented cross section was given to us
by Pedro Machado, one of the model’s authors. Details of the implementation, including the differential
cross section, can be find in a public note: GENIE DocDB 206.

https://genie-docdb.pp.rl.ac.uk/cgi-bin/ShowDocument?docid=206

28 CHAPTER 2. PHYSICS MODELING ELEMENTS

2.4 Neutrino-induced hadronization

2.4.1 Introduction
In neutrino interaction simulations the hadronization model (or fragmentation model) determines the
final state particles and 4-momenta given the nature of a neutrino-nucleon interaction (CC/NC, ν/ν̄,
target neutron/proton) and the event kinematics (W 2, Q2, x, y). The modeling of neutrino-produced
hadronic showers is important for a number of analyses in the current and coming generation of neutrino
oscillation experiments:

Calorimetry: Neutrino oscillation experiments which use calorimetry to reconstruct the shower energy,
and hence the neutrino energy, are sensitive to the modelling of hadronic showers. These detectors are
typically calibrated using single particle test beams, which introduces a model dependence in determining
the conversion between detector activity and the energy of neutrino-produced hadronic systems [43].

NC/CC Identification: Analyses which classify events as charged current (CC) or neutral current (NC)
based on topological features such as track length in the few-GeV region rely on accurate simulation of
hadronic particle distributions to determine NC contamination in CC samples.

Topological Classification: Analyses which rely on topological classifications, for instance selecting
quasi-elastic-like events based on track or ring counting depend on the simulation of hadronic systems
to determine feeddown of multi-particle states into selected samples. Because of the wide-band nature
of most current neutrino beams, this feeddown is non-neglible even for experiments operating in beams
with mean energy as low as 1 GeV [15, 44].

νe Appearance Backgrounds: A new generation of νµ → νe appearance experiments are being devel-
oped around the world, which hope to find evidence of charge-parity (CP) violation in the lepton sector.
In these experiments background is dominated by neutral pions generated in NC interaction. The evalua-
tion of NC backgrounds in these analysis can be quite sensitive to the details of the NC shower simulation
and specifically the π0 shower content and transverse momentum distributions of hadrons [45].

2.4.2 Survey of measurements
The characteristics of neutrino-produced hadronic systems have been extensively studied by several bubble
chamber experiments. The bubble chamber technique is well suited for studying details of charged hadron
production in neutrino interactions since the detector can provide precise information for each track.
However, the bubble chamber has disadvantages for measurements of hadronic system characteristics as
well. The detection of neutral particles, in particular of photons from π0 decay, was difficult for the low
density hydrogen and deuterium experiments. Experiments that measured neutral pions typically used
heavily liquids such as neon-hydrogen mixtures and Freon. While these exposures had the advantage of
higher statistics and improved neutral particle identification, they had the disadvantage of introducing
intranuclear rescattering which complicates the extraction of information related to the hadronization
process itself.

We tried to distill the vast literature and focus on the following aspects of ν/ν̄ measurements made
in three bubble chambers - the Big European Bubble Chamber (BEBC) at CERN, the 15-foot bubble
chamber at Fermilab, and the SKAT bubble chamber in Russia. Measurements from the experiments
of particular interest for tuning purposes can be broadly categorized as multiplicity measurements and
hadronic system measurements. Multiplicity measurements include averaged charged and neutral particle
(π0) multiplicities, forward and backward hemisphere average multiplicities and correlations, topologi-
cal cross sections of charged particles, and neutral - charged pion multiplicity correlations. Hadronic
system measurements include fragmentation functions (z distributions), xF distributions, p2

T (transverse
momentum squared) distributions, and xF − 〈p2

T 〉 correlations (“seagull” plots).
The systematic errors in many of these measurements are substantial and various corrections had to

be made to correct for muon selection efficiency, neutrino energy smearing, etc. The direction of the

2.4. NEUTRINO-INDUCED HADRONIZATION 29

incident ν/ν̄ is well known from the geometry of the beam and the position of the interaction point. Its
energy is unknown and is usually estimated using a method based on transverse momentum imbalance.
The muon is usually identified through the kinematic information or by using an external muon identifier
(EMI). The resolution in neutrino energy is typically 10% in the bubble chamber experiments and the
invariant hadronic mass W is less well determined.

The differential cross section for semi-inclusive pion production in neutrino interactions

ν +N → µ− + π +X (2.2)

may in general be written as:

dσ(x,Q2, z)

dxdQ2dz
=
dσ(x,Q2)

dxdQ2
Dπ(x,Q2, z), (2.3)

where Dπ(x,Q2, z) is the pion fragmentation function. Experimentally Dπ is determined as:

Dπ(x,Q2, z) = [Nev(x,Q
2)]−1dN/dz. (2.4)

In the framework of the Quark Parton Model (QPM) the dominant mechanism for reactions (2.2)
is the interaction of the exchanged W boson with a d-quark to give a u-quark which fragments into
hadrons in neutrino interactions, leaving a di-quark spectator system which produces target fragments.
In this picture the fragmentation function is independent of x and the scaling hypothesis excludes a Q2

dependence; therefore the fragmentation function should depend only on z. There is no reliable way
to separate the current fragmentation region from the target fragmentation region if the effective mass
of the hadronic system (W) is not sufficiently high. Most experiments required W > W0 where W0 is
between 3 GeV/c2 and 4 GeV/c2 when studying the fragmentation characteristics. The caused difficulties
in the tuning of our model because we are mostly interested in the interactions at low hadronic invariant
masses.

2.4.3 Overview of hadronization models implemented in GENIE

2.4.4 Empirical AGKY 2018 model for low-mass hadronization

In order to improve Monte Carlo simulations for the MINOS experiment, a new hadronization model,
referred to here as the ‘AGKY model’, was developed. We use the PYTHIA/JETSET [46] model to
simulate the hadronic showers at high hadronic invariant masses. We also developed a phenomenological
description of the low invariant mass hadronization since the applicability of the
PYTHIA/JETSET model, for neutrino-induced showers, is known to deteriorate as one approaches the
pion production threshold. We present here a description of the AGKY hadronization model and the
tuning and validation of this model using bubble chamber experimental data.

2.4.4.1 Simulation strategy

The AGKY model, which is now the default hadronization model in the neutrino Monte Carlo generators
NEUGEN [6] and GENIE-2.0.0 [47], includes a phenomenological description of the low invariant mass
region based on Koba-Nielsen-Olesen (KNO) scaling [48], while at higher masses it gradually switches
over to the PYTHIA/JETSET model. The transition from the KNO-based model to the
PYTHIA/JETSET model takes place gradually, at an intermediate invariant mass region, ensuring the
continuity of all simulated observables as a function of the invariant mass. This is accomplished by using
a transition window [W tr

min,W
tr
max] over which we linearly increase the fraction of neutrino events for

30 CHAPTER 2. PHYSICS MODELING ELEMENTS

which the hadronization is performed by the PYTHIA/JETSET model from 0% at W tr
min to 100% at

W tr
max. The default values used in the AGKY model are:

W tr
min = 2.3 GeV/c2,W tr

max = 3.0 GeV/c2. (2.5)

The kinematic region probed by any particular experiment depends on the neutrino flux, and for the
1-10 GeV range of importance to oscillation experiments, the KNO-based phenomenological description
plays a particularly crucial role. The higher invariant mass region where PYTHIA/JETSET is used
is not accessed until a neutrino energy of approximately 3 GeV is reached, at which point 44.6% of
charged current interactions are non-resonant inelastic and are hadronized using the KNO-based part of
the model. For 1 GeV neutrinos this component is 8.3%, indicating that this model plays a significant
role even at relatively low neutrino energies. At 9 GeV, the contributions from the KNO-based and
PYTHIA/JETSET components of the model are approximately equal, with each handling around 40%
of generated CC interactions. The main thrust of this work was to improve the modeling of hadronic
showers in this low invariant mass / energy regime which is of importance to oscillation experiments.

The description of AGKY’s KNO model, used at low invariant masses, can be split into two indepen-
dent parts:

• Generation of the hadron shower particle content

• Generation of hadron 4-momenta

These two will be described in detail in the following sections.
The neutrino interactions are often described by the following kinematic variables:

Q2 = 2Eν(Eµ − pLµ)−m2

ν = Eν − Eµ
W 2 = M2 + 2Mν −Q2

x = Q2/2Mν

y = ν/Eν (2.6)

where Q2 is the invariant 4-momentum transfer squared, ν is the neutrino energy transfer, W is the
effective mass of all secondary hadrons (invariant hadronic mass), x is the Bjorken scaling variable, y is
the relative energy transfer, Eν is the incident neutrino energy, Eµ and pLµ are the energy and longitudinal
momentum of the muon, M is the nucleon mass and m is the muon mass.

For each hadron in the hadronic system, we define the variables z = Eh/ν, xF = 2p∗L/W and pT
where Eh is the energy in the laboratory frame, p∗L is the longitudinal momentum in the hadronic c.m.s.,
and pT is the transverse momentum.

2.4.4.1.1 Low-W model: Particle content At low invariant masses the AGKY model generates
hadronic systems that typically consist of exactly one baryon (p or n) and any number of π and K mesons
that are kinematically possible and consistent with charge conservation.

For a fixed hadronic invariant mass and initial state (neutrino and struck nucleon), the method for
generating the hadron shower particles generally proceeds in four steps:

Determine 〈nch〉: Compute the average charged hadron multiplicity using the empirical expression:

〈nch〉 = ach + bch lnW 2 (2.7)

The coefficients ach, bch, which depend on the initial state, have been determined by bubble chamber
experiments.

2.4. NEUTRINO-INDUCED HADRONIZATION 31

Table 2.3: Default average hadron multiplicity and dispersion parameters used in the AGKY model.
νp νn ν̄p ν̄n

ach 0.40 [50] -0.20 [50] 0.02 [51] 0.80 [51]
bch 1.42 [50] 1.42 [50] 1.28 [51] 0.95 [51]
cch 7.93 [50] 5.22 [50] 5.22 7.93
ahyperon 0.022 0.022 0.022 0.022
bhyperon 0.042 0.042 0.042 0.042

Determine 〈n〉: Compute the average hadron multiplicity as 〈ntot〉 = 1.5〈nch〉 [49].
Deterimine n: Generate the actual hadron multiplicity taking into account that the multiplicity

dispersion is described by the KNO scaling law [48]:

〈n〉 × P (n) = f(n/〈n〉) (2.8)

where P (n) is the probability of generating n hadrons and f is the universal scaling function which can
be parametrized by the Levy function 1 (z = n/〈n〉) with an input parameter c that depends on the
initial state. Fig. 2.1 shows the KNO scaling distributions for νp (left) and νn (right) CC interactions.
We fit the data points to the Levy function and the best fit parameters are cch = 7.93± 0.34 for the νp
interactions and cch = 5.22± 0.15 for the νn interactions.

Select particle types: Select hadrons up to the generated hadron multiplicity taking into account
charge conservation and kinematic constraints. The hadronic system contains any number of mesons and
exactly one baryon which is generated based on simple quark model arguments. Protons and neutrons
are produced in the ratio 2:1 for νp interactions, 1:1 for νn and ν̄p, and 1:2 for ν̄n interactions. Charged
mesons are then created in order to balance charge, and the remaining mesons are generated in neutral
pairs. The probablilities for each are 31.33% (π0, π0), 62.66% (π+, π−), and 6% strange meson pairs.
The probability of producing a strange baryon via associated production is determined from a fit to Λ
production data:

Phyperon = ahyperon + bhyperon lnW 2 (2.9)

TABLE 2.3 shows the default average hadron multiplicity and dispersion parameters used in the
AGKY model.

2.4.4.1.2 Low-W model: Hadron system decay Once an acceptable particle content has been
generated, the available invariant mass needs to be partitioned amongst the generated hadrons. The most
pronounced kinematic features in the low-W region result from the fact that the produced baryon is much
heavier than the mesons and exhibits a strong directional anticorrelation with the current direction.

Our strategy is to first attempt to reproduce the experimentally measured final state nucleon momen-
tum distributions. We then perform a phase space decay on the remnant system employing, in addition,
a pT -based rejection scheme designed to reproduce the expected meson transverse momentum distribu-
tion. The hadronization model performs its calculation in the hadronic c.m.s., where the z-axis is in
the direction of the momentum transfer. Once the hadronization is completed, the hadronic system will
be boosted and rotated to the LAB frame. The boost and rotation maintains the pT generated in the
hadronic c.m.s.

In more detail, the algorithm for decaying a system of N hadrons is the following:
Generate baryon: Generate the baryon 4-momentum P ∗N = (E∗N ,p

∗
N) using the nucleon p2

T and xF
PDFs which are parametrized based on experimental data [52, 53]. The xF distribution used is shown in
Fig.2.2. We do not take into account the correlation between pT and xF in our selection.

1The Levy function: Levy(z; c) = 2e−cccz+1/Γ(cz + 1)

32 CHAPTER 2. PHYSICS MODELING ELEMENTS

>
ch

/<nchn

0 1 2 3 4

)
c
h

>
P

(n
c
h

<
n

−210

−110

1

10 2
DνData 15’

1<W<3GeV

3<W<5GeV

5<W<7GeV

7<W<10GeV

10<W<15GeV

pν

>
ch

/<nchn

0 1 2 3 4

)
c
h

>
P

(n
c
h

<
n

−210

−110

1

10 nν
2

DνData 15’

1<W<3GeV

3<W<5GeV

5<W<7GeV

7<W<10GeV

10<W<15GeV

Figure 2.1: νp (left) and νn interactions. The curve represents a fit to the Levy function. Data points
are taken from [50].

Remnant System: Once an accepted P ∗N has been generated, calculate the 4-momentum of the re-
maining N-1 hadrons, (the “remnant” hadronic system) as P ∗R = P ∗X − P ∗N where P ∗X = (W, 0) is the
initial hadron shower 4-momentum in the hadronic c.m.s.

Decay Remnant System: Generate an unweighted phase space decay of the remnant hadronic system.
The decay takes place at the remnant system c.m.s. after which the particles are boosted back to the
hadronic c.m.s. The phase space decay employs a rejection method suggested in [54], with a rejection
factor e−A∗pT for each meson. This causes the transverse momentum distribution of the generated
mesons to fall exponentially with increasing p2

T . Here pT is the momentum component perpendicular to
the current direction.

Two-body hadronic systems are treated as a special case. Their decay is performed isotropically in
the hadronic c.m.s. and no pT -based suppression factor is applied.

2.4.4.2 Key data and theoretical assumptions built into the model

2.4.4.3 Model systematics

2.4.4.4 Evaluation of model strengths and weaknesses

2.4.4.5 Discussion of limitations and opportunities for model improvements

The upcoming generation of experiments have all the necessary prerequisites to significantly address the
existing experimental uncertainties in hadronization at low invariant mass. These result from the fact
that these detectors have good containment for both charged and neutral particles, high event rates,
good tracking resolution, excellent particle identification and energy resolution, and the possibility of
collecting data on free nucleons with cryogenic targets. The latter offers the possibility of addressing the
challenge of disentangling hadronization modeling from intranuclear rescattering effects. Charged current
measurements of particular interest will include clarifying the experimental discrepancy at low invariant
mass between the existing published results as shown in Fig.2.7, the origin of which probably relates

2.4. NEUTRINO-INDUCED HADRONIZATION 33

Fx
1.0 0.5 0.0 0.5

F
)

d
N

/d
x

0
(1

/N

0.00

0.02

0.04

0.06

0.08

0.10

Figure 2.2: Nucleon xF distribution data from Cooper et al. [53] and the AGKY parametrization (solid
line).

34 CHAPTER 2. PHYSICS MODELING ELEMENTS

to particle misidentification corrections [55]. This discrepancy has a large effect on forward/backward
measurements, and a succesful resolution of this question will reduce systematic differences between
datasets in a large class of existing measurements. In addition, measurements of transverse momentum
at low invariant masses will be helpful in model tuning. Measurements of neutral particles, in particular
multiplicity and particle dispersion from free targets at low invariant mass, will be tremendously helpful.
The correlation between neutral and charged particle multiplicities at low invariant mass is particularly
important for oscillation simulations, as it determines the likelihood that a low invariant mass shower
will be dominated by neutral pions.

2.4.5 Empirical hadronization model for charm production

2.4.5.1 Simulation strategy

2.4.5.2 Key data and theoretical assumptions built into the model

2.4.5.3 Model systematics

2.4.5.4 Evaluation of model strengths and weaknesses

2.4.5.5 Discussion of limitations and opportunities for model improvements

2.4.6 PYTHIA6

The high invariant mass hadronization is performed by the PYTHIA model [46]. The PYTHIA program
is a standard tool for the generation of high-energy collisions, comprising a coherent set of physics models
for the evolution from a few-body hard process to a complex multihadronic final state. It contains a
library of hard processes and models for initial- and final-state parton showers, multiple parton-parton
interactions, beam remnants, string fragmentation and particle decays. The hadronization model in
PYTHIA is based on the Lund string fragmentation framework [56]

2.4.6.1 Interfacing GENIE and PYTHIA6

2.4.6.2 Model systematics

In GENIE, all but four of the PYTHIA configuration parameters are set to be the default values. Those
four parameters take the non-default values tuned by NUX [10], a high energy neutrino MC generator
used by the NOMAD experiment:

• Pss̄ controlling the ss̄ production suppression:
(PARJ(2))=0.21.

• P〈p2T 〉 determining the average hadron 〈p2
T 〉:

(PARJ(21))=0.44.

• Pngt parameterizing the non-gaussian pT tails:
(PARJ(23))=0.01.

• PEc an energy cutoff for the fragmentation process:
(PARJ(33))=0.20.

2.4. NEUTRINO-INDUCED HADRONIZATION 35

)
4

/c
2

(GeV
2

W
1 10

210

>
c
h

<
n

0

2

4

6

8

10

2
Dν15’

2
HνBEBC

AGKY

++
X-µ→pν(a)

)
4

/c
2

(GeV
2

W
1 10

210
>

c
h

<
n

0

2

4

6

8

10

2
Dν15’

AGKY

+
X-µ→nν(b)

Figure 2.3: 〈nch〉 as a function of W 2. (a) νp events. (b) νn events. Data points are taken from [50, 57].

>-<n
0 1 2 3 4

-
D

0

0.5

1

1.5

2

2
Dνp 15’ ν

2
Dνn 15’ ν

p AGKYν

n AGKYν

(a)

)
4

/c
2

(GeV
2

W
1 10

210
3

10

>
c
h

D
/<

n

0

0.2

0.4

0.6

0.8

2
Dνp 15’ ν

2
Dνn 15’ ν

p AGKYν

n AGKYν

(b)

Figure 2.4: D− = (〈n2
−〉− 〈n−〉2)1/2 as a function of 〈n−〉. (b) D/〈nch〉 as a function of W 2. Data points

are taken from [50].

36 CHAPTER 2. PHYSICS MODELING ELEMENTS

2.4.7 Hybrid models

2.4.8 Characteristic data/MC comparisons
We determined the parameters in our model by fitting experimental data with simulated CC neutrino
free nucleon interactions uniformly distributed in the energy range from 1 to 61 GeV. The events were
analyzed to determine the hadronic system characteristics and compared with published experimental
data from the BEBC, Fermilab 15-foot, and SKAT bubble chamber experiments. We reweight our MC
to the energy spectrum measured by the experiment if that information is available. This step is not
strictly necessary for the following two reasons: many observables (mean multiplicity, dispersion, etc.)
are measured as a function of the hadronic invariant mass W , in which case the energy dependency is
removed; secondly the scaling variables (xF , z, etc.) are rather independent of energy according to the
scaling hypothesis.

Some experiments required Q2 > 1GeV2 to reduce the quasi-elastic contribution, y < 0.9 to reduce
the neutral currents, and x > 0.1 to reduce the sea-quark contribution. They often applied a cut on the
muon momentum to select clean CC events. We apply the same kinematic cuts as explicitly stated in
the papers to our simulated events. The hadronization model described here is used only for continuum
production of hadrons, resonance-mediated production is described as part of the resonance model [34].
Combining resonance and non-resonant inelastic contributions to the inclusive cross section requires care
to avoide double-counting [58], and the underlying model used here includes a resonant contribution which
dominates the cross section at threshold, but whose contribution gradually diminishes up to a cutoff value
of W=1.7 GeV/c2, above which only non-resonant processes contribute. All of the comparisons shown in
this paper between models and data include the resonant contribution to the models unless it is explicitly
excluded by experimental cuts.

Fig.2.3 shows the average charged hadron multiplicity 〈nch〉 (the number of charged hadrons in the final
state, i.e. excluding the muon) as a function ofW 2. 〈nch〉 rises linearly with ln(W 2) forW > 2GeV/c2. At
the lowestW values the dominant interaction channels are single pion production from baryon resonances:

ν + p → µ− + p+ π+ (2.10)
ν + n → µ− + p+ π0 (2.11)
ν + n → µ− + n+ π+ (2.12)

Therefore 〈nch〉 becomes 2 (1) for νp (νn) interactions as W approaches the pion production threshold.
For νp interactions there is a disagreement between the two measurements especially at high invariant
masses, which is probably due to differences in scattering from hydrogen and deuterium targets. Our
parameterization of low-W model was based on the Fermilab 15-foot chamber data. Historically the
PYTHIA program was tuned on the BEBC data. The AGKY model uses the KNO-based empirical
model at low invariant masses and it uses the PYTHIA program to simulation high invariance mass
interactions. Therefore the MC prediction agrees better with the Fermilab data at low invariant masses
and it agrees better with the BEBC data at high invariant masses.

Fig.2.4(a) shows the dispersion D− = (〈n2
−〉 − 〈n−〉2)1/2 of the negative hadron multiplicity as a

function of 〈n−〉. Fig.2.4(b) shows the ratio D/〈nch〉 as a function of W 2. The dispersion is solely
determined by the KNO scaling distributions shown in Fig.2.1. The agreement between data and MC
predictions is satisfactory.

Fig.2.5(a) shows the average π0 multiplicity 〈nπ0〉 as a function of W 2. Fig.2.5(b) shows the disper-
sion of the distributions in multiplicity as a function of the average multiplicity of π0 mesons. As we
mentioned it is difficult to detect π0’s inside a hydrogen bubble chamber. Also shown in the plot are
some measurements using heavy liquids such as neon and Freon. In principle, rescattering of the primary
hadrons can occur in the nucleus. Some studies of inclusive negative hadron production in the hydrogen-
neon mixture and comparison with data obtained by using hydrogen targets indicate that these effects

2.4. NEUTRINO-INDUCED HADRONIZATION 37

)4/c2(GeV2W
1 10

210
3

10

>
0

π
<

n

0

1

2

3

4

FreonνA SKAT ν

2
Hνp BEBC ν

neon BEBCν

p AGKYν

n AGKYν

(a)

>0
π

<n
0 0.5 1 1.5 2 2.5 3

0
π

D

0

0.5

1

1.5

2

FreonνA SKAT ν

p AGKYν

n AGKYν

(b)

Figure 2.5: π0 mesons as a function ofW 2. (b) Dispersion of the distributions in multiplicity as a function
of the average multiplicity of π0 mesons. Data points are taken from [49, 59, 55]

0 2 4 6

>
0

π
<

n

0

1

2

3

4 2
Hνp BEBC ν

p AGKYν

2(a) 3<W<4GeV/c

n
0 2 4 6

>
0

π
<

n

0

1

2

3

4
2

Hνp BEBC ν

p AGKYν

2
(c) 5<W<7GeV/c

0 2 4 6

0

1

2

3

4 2
Hνp BEBC ν

p AGKYν

2(b) 4<W<5GeV/c

n
0 2 4 6

0

1

2

3

4
2

Hνp BEBC ν

p AGKYν

(d) 7<W<10GeV

Figure 2.6: π0 multiplicity 〈nπ0〉 as a function of the number of negative hadrons n− for different intervals
of W . Data points are taken from [55].

38 CHAPTER 2. PHYSICS MODELING ELEMENTS

1 10 10

>
c
h

<
n

0

1

2

3

4

5

2
HνBEBC

2
DνBEBC

2
Dν15’

AGKY

p forwardν(a)

)4/c2(GeV2W
1 10

2
10

>
c
h

<
n

0

1

2

3

4

5

2
DνBEBC

2
Dν15’

AGKY

n forwardν(c)

1 10 10

0

1

2

3

4

5

2
HνBEBC

2
DνBEBC

2
Dν15’

AGKY

p backwardν(b)

)4/c2(GeV2W
1 10

2
10

0

1

2

3

4

5

2
DνBEBC

2
Dν15’

AGKY

n backwardν(d)

Figure 2.7: W 2: (a) νp, forward, (b) νp, backward, (c) νn, forward, (d) νn, backward. Data points are
taken from [50, 55, 60].

2.4. NEUTRINO-INDUCED HADRONIZATION 39

are negligible [61]. The model is in good agreement with the data. 〈nπ0〉 is 0(1/2) for νp(νn) interactions
when the hadronic invariant mass approaches the pion production threshold, which is consistent with the
expectation from the reactions (2.10-2.12). The model predicts the same average π0 multiplicity for νp
and νn interactions for W > 2GeV/c2.

Fig.2.6 shows the average π0 multiplicities 〈nπ0〉 as a function of the number of negative hadrons n−
for various W ranges. At lower W , 〈nπ0〉 tends to decrease with n−, probably because of limited phase
space, while at higherW 〈nπ0〉 is rather independent of n− where there is enough phase space. Our model
reproduces the correlation at lowerW suggested by the data. However, another experiment measured the
same correlation using neon-hydrogen mixture and their results indicate that 〈nπ0〉 is rather independent
of n− for bothW > 4GeV/c2 andW < 4GeV/c2 [62]. Since events with π0 but with 0 or very few charged
pions are dominant background events in the νe appearance analysis, it is very important to understand
the correlation between the neutral pions and charged pions; this should be a goal of future experiments
[63].

Fig.2.7 shows the average charged-hadron multiplicity in the forward and backward hemispheres
as functions of W 2. The forward hemisphere is defined by the direction of the current in the total
hadronic c.m.s. There is a bump in the MC prediction in the forward hemisphere for νp interactions at
W ∼ 2GeV/c2 and there is a slight dip in the backward hemisphere in the same region. This indicates
that the MC may overestimate the hadrons going forward in the hadronic c.m.s. at W ∼ 2GeV/c2 and
underestimate the hadrons going backward. One consequence could be that the MC overestimates the
energetic hadrons since the hadrons in the forward hemisphere of hadronic c.m.s. get more Lorentz boost
than those in the backward hemisphere when boosted to the LAB frame. This may be caused by the
way we determine the baryon 4-momentum and preferably select events with low pT in the phase space
decay. These effects will be investigated further for improvement in future versions of the model.

The production of strange particles via associated production is shown in Figures 2.8 and 2.9. The
production of kaons and lambdas for the KNO-based model are in reasonable agreement with the data,
while the rate of strange meson production from JETSET is clearly low. We have investigated adjusting
JETSET parameters to produce better agreement with data. While it is possible to improve the agree-
ment with strange particle production data, doing so yields reduced agreement with other important
distributions, such as the normalized charged particle distributions.

Fig.2.10 shows the fragmentation functions for positive and negative hadrons. The fragmentation
function is defined as: D(z) = 1

Nev
· dNdz , where Nev is the total number of interactions (events) and

z = E/ν is the fraction of the total energy transfer carried by each final hadron in the laboratory frame.
The AGKY predictions are in excellent agreement with the data.

Fig.2.11 shows the mean value of the transverse momentum with respect to the current direction of
charged hadrons as a function of W . The MC predictions match the data reasonably well. In the naive
QPM, the quarks have no transverse momentum within the struck nucleon, and the fragments acquire a
P fragT with respect to the struck quark from the hadronization process. The average transverse momentum
〈P 2
T 〉 of the hadrons will then be independent of variables such as xBJ , y, Q2, W , etc., apart from trivial

kinematic constraints and any instrumental effects. Both MC and data reflect this feature. However, in a
perturbative QCD picture, the quark acquires an additional transverse component, 〈P 2

T 〉QCD, as a result
of gluon radiation. The quark itself may also have a primordial 〈P 2

T 〉prim inside the nucleon. These QCD
effects can introduce dependencies of 〈P 2

T 〉 on the variables xBJ , y, Q2, W , z, etc.

Fig.2.12 shows the mean value of the transverse momentum of charged hadrons as a function of xF ,
where xF =

p∗L
p∗Lmax

is the Feynman-x. As is well known, 〈pT 〉 increases with increasing |xF | with a shape
called the seagull effect. This effect is reasonably well modeled by the AGKY model.

40 CHAPTER 2. PHYSICS MODELING ELEMENTS

)4/c2(GeV2W
1 10

2
10

>
0

K
<

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ne ν15’

Ne ν15’

Ne νBEBC

Ne20 νAGKY

Figure 2.8: [64, 65, 66].

2.4. NEUTRINO-INDUCED HADRONIZATION 41

)4/c2(GeV2W
1 10

2
10

>
Λ

<
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ne ν15’

Ne ν15’

Ne νBEBC

Ne20 νAGKY

Figure 2.9: [64, 65, 66].

42 CHAPTER 2. PHYSICS MODELING ELEMENTS

z

0 0.2 0.4 0.6 0.8 1

(z
)

+
D

-3
10

-210

-110

1

10

, BEBC
2

Dν

p, AGKYν

n, AGKYν

+
(a) h

z

0 0.2 0.4 0.6 0.8 1
(z

)
-

D

-3
10

-210

-110

1

10

, BEBC
2

Dν

p, AGKYν

n, AGKYν

-
(b) h

Figure 2.10: W 2 > 5(GeV/c2)2, Q2 > 1(GeV/c)2. Data points are taken from [60].

)
2

W(GeV/c

2 4 6 8 10

>
(G

e
V

/c
)

T
<

P

0

0.2

0.4

0.6

2
Dνp 15’ ν

p AGKYν

>0
F

(a) x

)
2

W(GeV/c

2 4 6 8 10

>
(G

e
V

/c
)

T
<

P

0

0.2

0.4

0.6

2
Dνp 15’ ν

p AGKYν

<0
F

(b) x

)
2

W(GeV/c

2 4 6 8 10

>
(G

e
V

/c
)

T
<

P

0

0.2

0.4

0.6

2
Dνp 15’ ν

p AGKYν

F
(c) All x

Figure 2.11: W for the selections (a) xF > 0, (b) xF < 0, and (c) all xF . Data points are taken from
[67].

2.5. INTRANUCLEAR HADRON TRANSPORT MODELING 43

F
x

-1 -0.5 0 0.5 1

>
(G

e
V

/c
)

T
<

P

0

0.2

0.4

0.6

0.8

2Dνp 15’ ν

p AGKYν

2
(a) W<4GeV/c

F
x

-1 -0.5 0 0.5 1

>
(G

e
V

/c
)

T
<

P

0

0.2

0.4

0.6

0.8

2Dνp 15’ ν

p AGKYν

2
(b) W>4GeV/c

Figure 2.12: xF for ν̄p. (a) W < 4GeV/c2, (b) W > 4GeV/c2. Data points are taken from [67].

2.5 Intranuclear hadron transport modeling

2.5.1 Introduction

2.5.2 Survey of models and measurements

Hadrons produced in the nuclear environment may rescatter on their way out of the nucleus, and these
reinteractions significantly modify the observable distributions in most detectors.

It is also well established that hadrons produced in the nuclear environment do not immediately
reinteract with their full cross section. The basic picture is that during the time it takes for quarks
to materialize as hadrons, they propagate through the nucleus with a dramatically reduced interaction
probability. This was implemented in GENIE as a simple ‘free step’ at the start of the intranuclear
cascade during which no interactions can occur. The ‘free step’ comes from a formation time of 0.342
fm/c according to the SKAT model [68].

Intranuclear hadron transport in GENIE is handled by a subpackage called INTRANUKE.
INTRANUKE is an intranuclear cascade simulation and has gone through numerous revisions since the

original version was developed for use by the Soudan 2 Collaboration [69]. The sensitivity of a particular
experiment to intranuclear rescattering depends strongly on the detector technology, the energy range of
the neutrinos, and the physics measurement being made. INTRANUKE simulates rescattering of pions
and nucleons in the nucleus. When produced inside a nucleus, hadrons have a typical mean free path
(MFP) of a few femtometers. Detectors in a neutrino experiment are almost always composed of nuclei
today. Therefore, the hadrons produced in the primary interaction (what the neutrino does directly)
often (e.g. ∼30% in iron for few GeV neutrinos) have a FSI. There are many possibilities from benign
to dangerous. For example, a quasielastic (QE) interaction that emits a proton can end up with a final
state of 3 protons, 2 neutrons, and a few photons with finite probability. For a 1 GeV muon neutrino
QE interaction in carbon, the probability of a final state different than 1 proton is 35% (GENIE). A
possibility even worse is a pion production primary interaction where the pion is absorbed. Such an event
occurs for 20% (GENIE) of pion production events and can look like a QE event. At minimum, the wrong
beam energy will be measured for these events as the topology is often mistaken. A high quality Monte
Carlo code is the only way to understand the role of these events. Fig. 2.13 shows the pion energies that
are relevant to a νµC experiment at 1 GeV; we must understand the interactions of pions of up to about

44 CHAPTER 2. PHYSICS MODELING ELEMENTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

to
ta

l
c

ro
s

s
 s

e
c

ti
o

n
s

 (
×
 1

0
-3

8
 c

m
2
)

E
ν
 (GeV)

total CC π
+
 production - ν

µ

12

C → µ
-
 π

+
 X - E

ν

GENIE full
GENIE Delta only

GENIE res only

Figure 2.13: π+ total cross section resulting
from ν12

µ C interactions. Different lines show re-
sults including all sources, all resonances, and
the ∆ resonance alone. The nonresonant pro-
cesses are significant in GENIE.

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4d
if

fe
re

n
ti

a
l

c
ro

s
s

 s
e

c
ti

o
n

s
 (

×
 1

0
-3

8
 c

m
2
/G

e
V

)

T
π
 (GeV)

total CC π
+
 production - ν

µ

12

C → µ
-
 π

+
 X - E

ν
= 1 GeV

GENIE full (no FSI)
GENIE full

Figure 2.14: Comparison of the π+ momentum
distribution due to the bare resonance interac-
tion and what is seen in the final state.

0.8 GeV kinetic energy. We see that the ∆ resonance dominates the response for pion production, but
provides only about half of all pions. Fig. 2.14 shows that the spectrum of pions is significantly altered
by FSI.

The best way to understand the effects of FSI is to measure the cross sections for as many final
states as possible with neutrino beams. At this time, the storehouse for this kind of data is very bare.
Dedicated cross section experiments such as SciBooNE and MINERvA will bridge this gap, but we will
always be dependent on hadron-nucleus and photon-nucleus experiments for some information. These
experiments measure very useful properties of hadrons propagating in nuclei. Although hadron beams are
always composed free particles, neutrino experiments need the properties of hadrons produced off-shell in
the nucleus. (Pion photoproduction experiments provide useful bridge reactions. Pion FSI are always an
important part of all theory calculations for these experiments; the models always come from pion-nucleus
data.) The correct attitude is to validate FSI models for neutrino-nucleus with hadron-nucleus data, then
use these models to make first predictions of the upcoming dedicated cross section experiments.

Various models are available. Quantum mechanical models for hadron-nucleus experiments would be
the most correct, but difficulties in tracking multiple particles make such a calculation impossible. Semi-
classical models have some success in describing pion-nucleus interaction data and are now being applied
to neutrino interactions [12]. However, intranuclear cascade (INC) models [70, 71, 72, 73] provided the
most important means to understand pion-nucleus data where the final state was highly inelastic, i.e.
the kinds of data most important for neutrinos. In the semi-classical or INC models, the hadron sees a
nucleus of (largely) isolated nucleons (neutrons and protons). The probability of interaction is governed
by the free cross section and the density of nucleons,

λ(E, r) =
1

σhN,tot ∗ ρ(r)
(2.13)

The actual class of interaction is then chosen according to the cross sections for various reactions for free
nucleons, sometimes modified for nuclear medium effects.

2.5.2.1 Survey of models

Semi-classical models have advanced significantly due to the work of the Giessen group in building a
new program called GiBUU [12]. The strong interaction section [74, 22] is the most complete part of

2.5. INTRANUCLEAR HADRON TRANSPORT MODELING 45

the package. The dominant interaction of pions is through resonance formation and they are handled
with care. Nucleons in the nucleus are corrected for binding with a local potential well and for Fermi
motion with a local Fermi momentum. Resonance production is corrected for the nearby nucleons in a
local density approximation. Nonresonant reactions are added by hand. Allowing for the nonlocality of
the interaction is an important recent advance. The classical part of the model comes from the use of
free cross sections with corrections rather than quantum mechanical amplitudes for interactions. Thus,
GiBUU could be called a very sophisticated INC model. The passage of a hadron through the nuclear
medium is then handled by a set of coupled integro-differential equations. Thus, required computer
resources are significant.

GENIE, NEUT, and FLUKA have more standard INC models. They use free cross sections for
interactions but also apply medium corrections of various kinds. These corrections are less complete
and more empirical than what is found in GiBUU. These models are most applicable for higher energy
hadrons (roughly pions with kinetic energy larger than 300 MeV and nucleons above 200 MeV), where
the mean free path is long compared to the inter-nuclear spacing of roughly 1.8fm and the pion Compton
wavelength.

Peanut (FLUKA) [75] received a major effort in 1995-9 and is very well adapted to describe pro-
cesses from 10 MeV to 100 GeV. They include effects such as coherence time, refraction, and pre-
equilibrium/compound nucleus processes which simulate known quantum mechanical features. NEUT
FSI is based on the work of Salcedo, Oset, Vicente-Vacas, and Garcia-Recio [76]. This is a “∆ domi-
nance” model such as were common in the 1980’s when pion-nucleus physics was important in nuclear
physics. It has the advantage of doing a careful job simulating the pion-nucleus interaction through
∆(1232) intermediate states.

2.5.2.2 Systematics of hadron-nucleus data

Each nucleus has A nucleons (Z protons +N neutrons). All nuclei of interest to neutrino physics are
either bound or slightly unbound. Nuclear densities show saturation because of short range repulsion.
Therefore, the typical nucleus is approximately a sphere of radius proportional to A1/3. The charge
density of light nuclei (A<20) is found to be Gaussian or modified Gaussian. Heavier nuclei are described
by the Woods-Saxon shape,

ρ(r) = N0
1

1 + e(r−c)/z (2.14)

where c describes the size and a describes the width of the surface of a nucleus. For example, c=4.1 fm
and z=0.55 fm for 56Fe. To good accuracy, c is the radius where the density falls to half the central value
with c ∼ 1.2fm ∗A1/3 and z ∼ 0.55fm.

Hadrons interact with nuclei in a variety of ways. We use historical definitions of final states that
come from interpretation of experiments. In elastic scattering, the final state nucleus is in its ground state
and the hadron has same charge as the beam particle. If the hadron scatters inelastically, the residual
nucleus can be in the ground state or the nucleus can break apart. At low excitation energies (<∼ 10
MeV), the residual nucleus decays to a photon and the ground state. (This is important in analysis of
SuperKamiokande data.) At higher excitation energies, one or more nucleons are emitted. Final state
interactions increase this number. If there is a hadron of the same type but different charge in the final
state, we call it charge exchange. For example, the reaction π−p → π0n is very common inside nuclei.
As a boson, the pion can disappear inside the nucleus. Pion initiated reactions with no pions in the final
state are called absorption. (This provides an important background process to neutrino quasielastic
scattering.) For incident nucleons, most of these labels apply exactly. Since they can’t be absorbed, final
states with 2 or more nucleons are called spallation. If the hadron has enough energy, a pion (a second
pion if the initial hadron is a pion) can be produced in the nucleus. We call those events pion production.

For low energy incident particles, these definitions are clean. At higher energies, the states mix and

46 CHAPTER 2. PHYSICS MODELING ELEMENTS

confusion can result. For example, a reaction π+12C → π+π012C can be inelastic, charge exchange, or
pion production. Definitions we use call it pion production. A way to avoid difficulties is to measure
inclusive cross sections; there, the energy and angular distribution of a particular particle are determined.
In each case, various reactions are possible but models can be tested without ambiguity.

Because the MFP is so short for hadron interactions, elastic scattering cross sections look very diffrac-
tive. In fact, the angular distribution can be calculated with a quantum mechanical model using a black
disk for the nucleus. This wave property is very difficult to simulate in a semi-classical or INC model.

Another consequence of the short MFP is seen in the total reaction cross section (σreac = σtot−σelas).
For hadrons, this is close to the nuclear size, πR2. For example, σreac for protons and neutrons of 0.4-
1GeV is flat at a value of about 300mb=30fm2 for carbon and about 80fm2 for iron. These corresponds
to a radius, R, of about 3 and 5 fm. These values are close to the radius where the nuclear density is
about half of the central value. If we divide these values by A1/3, the result is close to the commonly
used value of 1.2 fm. The pion-nucleus reaction cross section at kinetic energies of about 85-315 MeV
is dominated by the effect of the ∆(1232) resonance. Thus, the effective size of the nucleus here is at a
radius where the density is about 1% of the central density. For total cross sections, the A dependence is
often a power relation, σ ∝ Aα, but α will vary from the expected value of 2/3 due to more complicated
dynamics. The total cross section for pion-nucleus has a power of about 0.8 for a wide range in energy.
The A dependence of α[77, 78] varies between 0.55 and 0.8 for the components of the total reaction cross
section as a function of energy and process.

Nevertheless, many inelastic cross sections have prominent contributions from quasifree interactions.
Here, the hadrons in the final state have the kinematics as though they came from a single interaction
between the incident particle and a nucleon in the nuclear medium. The name comes from the fact that
nucleons in the nuclear medium are in a bound state and therefore not free. If the nucleon were free,
the scattered particles would have a single energy at each angle. The struck nucleons have momentum
(called Fermi motion), giving particles a range of momentum at a given angle. The largest momentum a
nucleon can have is well-defined in the Fermi Gas model, is approximate in real nuclei. It is called the
Fermi momentum and its value is approximately 250 MeV/c. In heavy nuclei, the average binding energy
is about 25 MeV. Thus, the peak due to quasifree scattering from a bound nucleon is shifted by about 40
MeV from the free case and the width is roughly 100 MeV.

This process has been widely studied for electron and pion probes. If it could be studied with neutrinos,
the same structure would be seen. The so-called quasielastic peak is prominent in the inclusive scattering
cross section. At high excitation energies (lower kinetic energy for the scattered particle), a second peak
is found for quasifree pion production from a bound nucleon. Final state interactions are more important
in the details in this case. Consider the case of π+ interactions in carbon at 245 MeV. Evidence for
quasifree pion scattering is strong. A scattered π+ is tagged on one side of the beam and the spectrum
of protons is measured on the other side. A prominent peak is seen close to the angle where protons
would be if the target was a free proton. The same correlation is seen between 2 protons where the π+

is absorbed on a quasideuteron in the nuclear medium. Strong evidence for quasifree pion scattering and
absorption is seen. Calculations with an INC model are in excellent agreement with these data.

The energy distribution of π+ detected at 130◦ [79] shows a peak close to where scattering from a
free proton would be seen. Since Fig. 2.15 is for a H2O target, scattering from H is seen as a gap at
about 130 MeV (cross section is too large to show). Pions interacting with oxygen nuclei produce a
peak at about 100 MeV. Calculations show it is dominated by events with a single scattering (S). At low
energies, the distribution is modified by events with more than one scattering (M). At forward angles,
the contributions from multiple scattering aremore important.

If incident particles have a higher energy, complications can be found. With light targets, FSI effects
are small and quasifree scattering and pion production peaks are seen. However, INC calculations have
trouble getting the shape right, particularly in the region between the peaks. Fig. 2.16 is for π− scattering
from 12C at 500 MeV [80]. For π+ absorption, the quasifree process would be π+d→ pp since pions are

2.5. INTRANUCLEAR HADRON TRANSPORT MODELING 47

Figure 2.15: Inclusive π+scattering data from In-
gram, et al. compared with separate curves for
single and multiple scattering contributions.

Figure 2.16: Inclusive π− scattering data from
Zumbro, et al. compared with INC calculations
of Mashnik, et al.

Figure 2.17: Schematic diagram for reaction in-
volving typical FSI process.

Figure 2.18: Schematic diagram for reaction where
pion is produced then absorbed in the same nu-
cleus.

highly unlikely to be absorbed on a single nucleon. LADS data [81] for π+ absorption in Ar (A=40)
shows the largest strength for the pp final state but this is less than half of the total cross section.

2.5.2.3 INC models

Prominence of the quasifree reaction mechanism shows why INC models are valuable. These models
assume the nucleus is an ensemble of nucleons which have Fermi motion and binding energy. The incident
particle interacts in a series of encounters with single nucleons called a cascade (see Figs. 2.17, 2.18).

All interactions are governed by the cross section for the free process, e.g. π+n → π+n or pp → pp.
Probability of interaction is governed by a mean free path according to Eqn. 2.13. Cross sections for
pions, kaons, protons, and photons interacting with free nucleons are fit with a partial wave analysis
with results provided by the GWU group [82, 83]. Nucleon densities come from compilations; note that
neutron and protons have very similar densities even for nuclei such as lead.

The problems with INC models must be considered. Since interactions are governed by cross sections
rather than quantum mechanical amplitudes, the nuclear model is often very simple. The simplest and
most general nuclear model is the Fermi gas which is the basis for all neutrino-nucleus event generator

48 CHAPTER 2. PHYSICS MODELING ELEMENTS

Figure 2.19: Mashnik, et al. INC calculations com-
pared with McKeown, et al. data.

Figure 2.20: Mashnik, et al. INC calculations com-
pared with Iwamoto, et al. data.

models. Effects of nucleon correlations must be included empirically. Both the struck nucleon and the
scattered hadron are likely to be off-shell. Although this effect has been shown to be ‘moderate’, it is
difficult to simulate in a semi-classical model. Thus, there is no definite prescription for an INC model;
many versions exist with a wide range of applicability.

The successes of INC models are large. For many reactions, they are the only models available for
comparison. They were first used for pion production in proton-nucleus interactions by Metropolis and
Harp [70]. A general INC model (CEM03) developed by Mashnik and collaborators [71, 72, 73] has been
applied with success to a wide range of pion- and proton-nucleus data [84]. Examples are shown in Figs.
2.16, 2.19 and 2.20; we will show similar comparisons for the GENIE FSI model.

The FSI model in FLUKA is PEANUT. This uses a more sophisticated INC model than CEM03.
Various nuclear and quantum mechanical corrections are applied. The result is impressive agreement
with a wide variety of data.

Treatment of pion absorption is somewhat different in the INC models than the ∆ dominance models.
In the latter, pions first rescatter off a nucleon (off-shell) and then absorbed on another. There are
other mechanisms which should be included. Salcedo, Oset, Vicente-Vacas, and Garcia-Recio [76] include
both S-wave absorption and 3-body absorption. In INC, the fundamental process for pion absorption
is π+d → pp and this is often the only process included. Since the density of nucleons is much smaller
in deuterium as compared with real nuclei, an empirical factor (with a value often about 3) must be
included.

2.5.3 Overview of hadron transport models implemented in GENIE

The 2 FSI models in GENIE are described in some detail. The hA model is simpler and more empirical.
Although it isn’t the most accurate, it is very fast and straightforward to reweight. The hN model is
a full INC calculation which is much more accurate. In v2.4, the hA model is the only FSI model. For
version 2.6, both will be included but hA will still be the default. The hA model will be applicable to all
nuclei from helium to lead for kinetic energies up to 1.2 GeV for pions and nucleons. Its main value will

2.5. INTRANUCLEAR HADRON TRANSPORT MODELING 49

0 200 400 600 800 1000
KE [MeV]

0

400

800

1200

1600

2000

to
ta

l
x
s

(m
b
)

+ 56
Fe

pion prod

absorption

inelastic

elastic

total

Figure 2.21: π+Fe reactions used in GENIE hA
model. Final states are chosen according to these
values.

0 200 400 600 800 1000
p KE [MeV]

0

500

1000

1500

2000

2500

to
ta

l
x
s

(m
b
)

p
56

Fe

pi prod

multinucleon ko

cex

inelastic

elastic

total

Figure 2.22: Same for pFe reactions.

be for high energy neutrinos and in reweighting. The hN model is nearly complete for this round. It will
be valid for energies above 50 MeV and will provide a very complete description of many final states.

2.5.4 INTRANUKE hA 2018

2.5.4.1 Simulation strategy

The INTRANUKE hA model is in the spirit of the other models in GENIE. It is simple and empirical,
data-driven. Rather than calculate a cascade of hadronic interactions as is done in a complete INC model,
we use the total cross section for each possible nuclear process for pions and nucleons as a function of
energy up to 1.2 GeV. Thus, it is called hA. The emphasis is on iron because the first application was
to MINOS where production of high energy pions is important. At low energies (50-300 MeV), there is
sufficient data [77, 78, 85, 86, 87] for a good description. At high energies, only a few data points are
available. Here, we use results obtained for the CEM03 model. Although the calculations are complete,
they are not in good agreement with the existing total cross section data. Therefore, the calculations are
normalized to the data at low energies. Elastic data at high energy are used to extrapolate the model to
1.2 GeV.

The hA model also handles proton and neutron rescattering. The same reactions are possible except
that neither can be absorbed. Still, multinucleon knockout is highly probable. Although much less data
is available for nucleons than pions, CEM03 was tuned primarily for them.

The values used for π+ and p are shown in Figs. 2.21 and 2.22. Data values are used for energies
below 315 MeV for all cross sections. Total cross section data is available across the entire range. Data for
total and total reaction cross sections are used across the entire range in energy. Cross sections for targets
other than iron are obtained by scaling by A2/3. As discussed above, this is a reasonable approximation.
Because such a large range is covered, processes such as pion production must be included. Here, we use
the CEM03 calculations.

The total cross section is calculated from the mean free path and can be checked against data. In

50 CHAPTER 2. PHYSICS MODELING ELEMENTS

σ (π
+

+C
12

)

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200 1400

E(MeV)

σ
(m

b
)

Figure 2.23: π+C reactions. GENIE hA model is
used. Total cross section is determined with proper
mean free path in a carbon nucleus.

σ (π
+

+C
12

)

0

50

100

150

200

250

300

350

400

200 400 600

E(MeV)

σ
(m

b
)

0

50

100

150

200

250

300

350

400

200 400 600

E(MeV)

σ
(m

b
)

0

50

100

150

200

250

300

350

400

200 400 600

E(MeV)

σ
(m

b
)

0

50

100

150

200

250

300

350

400

200 400 600

E(MeV)

σ
(m

b
)

Figure 2.24: Component cross sections come from
the corresponding iron cross sections scaled by
A2/3.

addition the accuracy of the A2/3 scaling can be checked with data from another target. We show the
total and component cross sections for the model compared with carbon data in Figs. 2.23 and 2.24.
(Agreement for iron has less information and is equal in quality.)

All the data points in Figs. 2.23 and 2.24 have error bars. These are either taken from the data or
estimated. These provide the range of values sampled during reweighting exercises. This is an excellent
way to estimate model dependent errors in a neutrino oscillation experiment (see ‘Event Reweighting’
chapter). The ability to reweight is an important feature of this model.

This is the default FSI model in GENIE v2.4.0, the public version as of now. It uses identical cross
section for π+ and π− and for p and n. For isoscalar targets (e.g. 12C and 16O, this is no issue for the
pions because of isospin symmetry. For targets such as lead, this is a 10% effect. The charges of particles
in the final state tend to reflect the charge of the probe. For example, final states for π+ have more
protons than neutrons while the opposite holds for π−. Cross sections for π0 beams can’t be measured.
This code uses isospin symmetry to calculate them from the charged pions. The total reaction cross
sections for p and n are very similar, plots are shown in the next section. Charges of final state particles
tend to be more positive for incident protons.

Pion absorption and nucleon spallation reactions can knock out large numbers of nucleons. This is
seen strongly in data. More detailed calculations (see below) show an average of 10 nucleons ejected from
iron in pion absorption. To simplify the code, the hA model limits this to 5. For MINOS, this is never
an issue.

Angular and energy distributions of particles are estimated. For elastic scattering, template angular
distributions from relevant data are used. These distributions are very forward peaked, so it’s not an
important simplification. For final states with more than 1 hadron, particles are distributed by phase
space. This gives the correct limits, but the energy distribution changes somewhat when the ∆ resonance
dominates. The effect of these approximations have not yet been simulated, but they are unlikely to be
an important effect in the MINOS experiment. One of the most significant errors is in the treatment of
the quasielastic scattering. Only the incident particle is put in the final state and it’s energy and angle

2.5. INTRANUCLEAR HADRON TRANSPORT MODELING 51

distribution are both flat.
Since the elastic cross section can’t be generated in an INC model, it has to be added on. For the hA

model, we chose an empirical method. The size of the nucleus is increased by ∆R which is proportional
to the de Broglie wavelength. This nicely matches the data for all energies.

Almost all of the problems in the last paragraphs will be fixed in GENIE v2.6.0. Changes due to isospin
in either hadron or nucleus will be greatly improved. The number of final states sampled will be increased.
Inelastic final states will be assumed to be dominated by quasielastic events. (This approximation can
be checked against data and will be discussed in the next section.)

2.5.4.2 Key data and theoretical assumptions built into the model

2.5.4.3 Model systematics

2.5.4.4 Evaluation of model strengths and weaknesses

2.5.4.5 Summary of changes from previous versions of INTRANUKE hA

2.5.4.6 Discussion of limitations and opportunities for model improvements

2.5.5 INTRANUKE hN 2018

2.5.5.1 Simulation strategy

The INTRANUKE hN model in GENIE is a full INC model. It includes interactions of pions, nucleons,
kaons, and photons in all nuclei. The basis is the angular distributions as a function of energy for about
14 reactions from threshold to 1.2 GeV. All this information comes from the GWU group [82, 83]. A
preliminary version of the hN model is scheduled to be in GENIE v2.6.0, but the hA model will still be
the default.

As a full INC model, all reactions on all nuclei can be calculated. None of the restrictions that apply
to hA model are relevant. Although the choice of interaction points through the MFP is identical in the 2
models, the cascade is fully modeled in the hN model. For example, there is a small but finite probability
of knocking out every nucleon in an event.

One new feature of this code is the inclusion of nucleon pre-equilibrium and compund nuclear processes.
The present model is simple, but effective. This is important to give an improved description of the vertex
energy deposition.

The code was designed to minimize the number of parameters. One parameter scales the absorption
MFP and is fit to the pion total absorption cross section. Separate values for the ∆R values for pions and
nucleons are fit to the total reaction cross sections. All particles get a free step when they are produced;
this simulates the effect of ∆ resonance propagation in a simple way. It is used to adjust the normalization
of certain inclusive scattering distributions. A shift in the energy of nucleons in the nucleus is used to
put the quasielastic peak (see Fig. 2L) (similar to what is used in electron scattering).

The validation of this new code comes in 2 parts- the total cross sections for various processes (e.g.
Fig. 2.23) which test the overall propagation of particles and the inclusive cross sections (e.g. Figs. 2.16,
2.19 and 2.20). Each is important. Previous validations emphasize the total cross sections because this
sets the overall flow of particles into each topology. Previous neutrino experiments emphasize topology.
Future experiments are expected to put emphasis into the distribution of particles in energy and angle
as beam and detector technology improve.

The component total cross section data is limited to hadron energy of less than ∼350 MeV. The
exception is the total reaction cross section which has been measured for π+, π−, p, and n up to roughly
1 GeV. Figs. 2.25 and 2.26 show σreac for protons in iron and neutrons in carbon respectivelly. The energy
dependence is flat and we see the cross section approximately equal to the nuclear area as discussed in
the introduction. Agreement of the model is excellent.

52 CHAPTER 2. PHYSICS MODELING ELEMENTS

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400

σ
T

o
t
(m

b
)

Tp (MeV)

Total Reaction XS p+
56

Fe

Fe (various)
GENIE calc

Figure 2.25: pFe reactions from the GENIE hN
model.

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000

σ
T

o
t
(m

b
)

Tn (MeV)

Total Reaction XS n+
12

C

C (Schimmerling)
GENIE calc

Figure 2.26: Total reaction cross sections for nC
reactions from the GENIE hN model.

In Figs. 2.27 and 2.28, we show σreac for pions. The agreement is excellent except at low energies for
heavier targets; this is still under study.

With the significant interest in absorption, we show 2 examples of that total cross section in Figs.
2.29 and 2.30. Overall agreement is very good, but the problem in σreac at low energies for heavy targets
is shown to be in the absorption channel.

Continuing with absorption, we show 2 examples similar to Figs. 2.19 and 2.20 in Figs. 2.31 and
2.32. The agreement shown here is excellent as the details of pion reactions are explored across a wide
kinematic range.

The last example of this new code is for scattering processes. When hadrons interact in the nuclear
medium, the quasifree scattering process is important; that has been seen in numerous data sets. In
Figs. 2.33 and 2.34 we show examples for pion and proton scattering. For the pion case, a back angle is
shown; here, the quasielastic mechanism dominates. For protons, the beam energy is large enough that
the multiple scattering process is sampled over a wide range in energy. The agreement is excellent.

2.5.5.2 Key data and theoretical assumptions built into the model

2.5.5.3 Model systematics

2.5.5.4 Evaluation of model strengths and weaknesses

2.5.5.5 Summary of changes from previous versions of INTRANUKE hN

2.5.5.6 Discussion of limitations and opportunities for model improvements

2.5.6 Characteristic data/MC distributions and comparison of hadron trans-
port models in GENIE

2.6 Summary

2.6. SUMMARY 53

KE (MeV)
0 200 400 600 800 1000 1200

 (
m

b
)

σ

0

100

200

300

400

500

600

700

800

900

1000
Ashery data

Allardyce data

GENIE calc

+ C total reaction cross sectionπ

Figure 2.27: π+C using the GENIE hN model
compared to data.

KE (MeV)
0 200 400 600 800 1000 1200

 (
m

b
)

σ

0

500

1000

1500

2000

2500

3000

3500

4000
Ashery data

Allardyce data

GENIE calc

+ Pb total reaction cross sectionπ

Figure 2.28: Total reaction cross sections for π+Pb
using the GENIE hN model.

KE (MeV)
0 200 400 600 800 1000 1200

 (
m

b
)

σ

0

50

100

150

200

250

300

350

400

450

500
Ashery data

GENIE calc

+ C total absorption cross sectionπ

Figure 2.29: π+C using the GENIE hN model
compared to data.

KE (MeV)
0 200 400 600 800 1000 1200

 (
m

b
)

σ

0

100

200

300

400

500

600

700

800

900

1000 19

data

GENIE calc

+ Fe total absorption cross sectionπ

Figure 2.30: Total reaction cross sections for π+Pb
using the GENIE hN model.

54 CHAPTER 2. PHYSICS MODELING ELEMENTS

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

in
c
lu

s
iv

e
 c

ro
s
s
 s

e
c
ti
o
n
s
 (

m
b
/s

r*
M

e
V

)

Tp (MeV)

π
+
 A → pX; T

π
= 220 MeV, θ=30 deg

data Li
2*data Be
4*data C
6*data Al
8*data Ni

10*data Ta
GENIE Li

2*GENIE Be
4*GENIE C
6*GENIE Al
8*GENIE Ni

10*GENIE Ta

Figure 2.31: π+ interacting in various nuclei. In
each distribution, protons are detected at 30◦.
Data is from McKeown, et al. These protons come
from both absorption and scattering processes.

Energy [MeV]
0 100 200 300 400 500 600 700 800 900

]
M

e
V

⋅
s
rm

b
 [

d
E

Ω
d

σ
d

-3
10

-210

-110

1

10

210

3
10

410

Graph Title

Figure 2.32: Inclusive cross sections for neutrons
emitted from 870 MeV π+ interacting in iron. In
each case, neutrons are detected at different angles.
Data is from Iwamoto, et al. These neutrons come
from predominantly the absorption process.

Energy [MeV]
0 20 40 60 80 100 120 140 160 180 200 220 240

]
M

e
V

⋅
s
rm

b
 [

d
E

Ω
d

σ
d

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
GENIE 19

Ingram Data (130 deg)

+ Xπ →+ 16O π240 MeV

Figure 2.33: π+ scattered at 130◦ from 240 MeV
π+ interacting with oxygen. At this back angle,
the spectrum of π+ is dominated by the quasifree
mechanism. Data is from Ingram, et al.

Energy [MeV]
0 100 200 300 400 500 600 700 800

]
M

e
V

⋅
s
rm

b
 [

d
E

Ω
d

σ
d

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
GENIE 19

Mcgill Data (20 deg)

 p X→800 MeV p Ca

Figure 2.34: Inclusive cross sections for protons
scattered at 20◦ from 800 MeV protons interact-
ing with calcium. Data is from McGill, et al and
Chrien, et al. There is a known absolute normal-
ization difference between the 2 experiments but it
is not available to us.

Chapter 3

Comprehensive Model Configurations
and Tunes

3.1 Introduction

3.2 Naming conventions

Starting from v3.0.0, with the deployment of multiple comprehensive configurations and tunes, and the
addition of a ‘--tune’ argument in several apps, GENIE adopted the following uniform naming convention
for its model configurations and tunes.

3.2.1 Comprehensive model configuration naming convention

A comprehensive model configuration is identified by a 7-character string in the form:

Gdd_MMν

where

• G is a capital letter that identifies the author of the tune.

– The default value is G (for the GENIE collaboration).

• dd is a number describing the year during which the model configuration was developed.

• MM is a number (00, 01, 02, ...) identifying a model configuration branch.

• v is a character (a, b, c, ...) enumerating variations / offshoots of a model configuration branch.

Test CMCs might be created temporally in order to make easier to use new models and to make sure
the new models are properly configured. These are identified by their name by having the initial G
replaced by GTEST. Test CMCs are not official tunes: they are not going to be supported by the
GENIE collaboration and are not suppoed to be used in official public contexts.

55

56 CHAPTER 3. COMPREHENSIVE MODEL CONFIGURATIONS AND TUNES

3.2.2 Tune naming convention
Once a comprehensive model configuration is defined, a number of different tunes may be produced.
Each distinct choice of a) fit datasets and dataset weighting scheme, b) parameters of interest and
nuisance parameters, and c) prior constraints, leads to a different tune. A tune is identified by the model
configuration name, and additional information enumerating the parameters and datasets. This is a
14-character string in the form:

Gdd_MMν_PP_xxx

where

• Gdd_MMv describes the model configuration (see above).

• PP is a number identifying the set of tuned parameters. This parameter set is defined uniquely
only in the context of a particular model configuration.

– The number 00 indicates that a model configuration has not been tuned by GENIE.

• xxx is a number that identifies the dataset used for the model configuration tuning. This may
include a unique set weights associated with each component dataset.

– The number 00 indicates that a model configuration has not been tuned by GENIE.

3.3 GENIE comprehensive model configurations

3.3.1 Overview

3.3.2 Comprehensive model construction
3.3.2.1 Construction of G18_01* series

3.3.2.2 Construction of G18_02* series

3.3.2.3 Construction of G18_10* series

3.3.3 Critical comparison of comprehensive model configurations

3.3. GENIE COMPREHENSIVE MODEL CONFIGURATIONS 57

Name Brief description Supp. Vrs.
G00_00a Preserved historical ‘Default’ model of the GENIE / Generator v2 series. No 3.0.0 -
G00_00b Preserved historical ‘Default+MEC’ model of the GENIE / Generator v2 series. No 3.0.0 -
G18_01a An adiabatic evolution of the historical empirical model.

The comprehensive configuration retains all the main elements of the historical
‘Default+MEC’ cross-section model (using the nuclear model of Bodek and Ritchie
and simulating NCEL using an implementation of the Ahrens model, CCQE using
Llewellyn Smith, NC and CC multi-nucleon processes using the empirical GENIE
MEC model, NC and CC resonance production using Rein-Sehgal, NC and CC
shallow and deep inelastic scattering using Bodek-Yang, NC and CC coherent
production of pions using Rein-Sehgal), but adds generators for previously missing
processes: Coherent production of ρ mesons is simulated using the vector meson
dominance model of Kopeliovich and Marage, diffractive production of pions using
the Rein model, and hyperon production using the Pais model. The hadronization
model used is AGKY and it is unchanged wrt to previous versions. The intranuclear
hadron transport model used is the upgraded INTRANUKE hA 2018 one. The
details of the construction of this comprehensive configuration are presented in Sec.
3.3.2.1.
Several new tunes are provided for this comprehensive model (See. Tab. ??).

Yes 3.0.0 -

G18_01b As G18_01a, but replacing INTRANUKE hA 2018 with hN 2018. Yes 3.0.0 -
G18_02a An improved empirical comprehensive model.

This comprehensive configuration installs several improvements wrt to G18_01a.
For the simulation of NC and CC resonance production the Rein-Sehgal model is
replaced by the model of Berger-Sehgal. For the simulation of NC and CC coherent
production of pions and the Rein-Sehgal model is replaced by the model and
Berger-Sehgal. As in G18_01a, generators for several missing processes have been
added: Coherent production of ρ mesons is simulated using the vector meson
dominance model of Kopeliovich and Marage, diffractive production of pions using
the Rein model, and hyperon production using the Pais model. The hadronization
model used is AGKY and it is unchanged wrt to previous versions. The intranuclear
hadron transport model used is the upgraded INTRANUKE hA 2018 one. The
details of the construction of this comprehensive configuration are presented in Sec.
3.3.2.2.
Several new tunes are provided for this comprehensive model (See. Tab. ??).

Yes 3.0.0 -

G18_02b As G18_01a, but replacing INTRANUKE hA 2018 with hN 2018. Yes 3.0.0 -
G18_10a A theory-driven comprehensive model.

This comprehensive model embeds the best theoretical modelling elements
implemented in GENIE. It uses the Local Fermi Gas nuclear model and an
implementation of the theory calculation of Nieves et al. for the simulation of
CCQE and CC multi-nucleon processes. The empirical GENIE MEC model is used
for the NC multi-nucleon processes since they are not included in the Nieves
calculation. NCEL is simulated using an implementation of the Ahrens model, NC
and CC resonance production using Berger-Sehgal, NC and CC shallow and deep
inelastic scattering using Bodek-Yang, NC and CC coherent production of pions
using Berger-Sehgal. Like the other G18* configurations, it adds generators for
previously missing processes: Coherent production of ρ mesons is simulated using
the vector meson dominance model of Kopeliovich and Marage, diffractive
production of pions using the Rein model, and hyperon production using the Pais
model. The hadronization model used is AGKY and it is unchanged wrt to previous
versions. The intranuclear hadron transport model used is the upgraded
INTRANUKE hA 2018 one. The details of the construction of this comprehensive
configuration are presented in Sec. 3.3.2.3.
Several new tunes are provided for this comprehensive model (See. Tab. ??).

Yes 3.0.0 -

G18_10b As G18_10a, but replacing INTRANUKE / hA 2018 with hN 2018. Yes 3.0.0 -
G18_10i As G18_10a, but replacing the QE dipole axial form factor with a z expansion. Yes 3.0.0 -
G18_10j As G18_10b, but replacing the QE dipole axial form factor with a z expansion. Yes 3.0.0 -

Table 3.1: List of comprehensive model configurations in the v3 series of the GENIE / Generator.

58 CHAPTER 3. COMPREHENSIVE MODEL CONFIGURATIONS AND TUNES

3.4 GENIE tunes
Namig the tunes is more tricky than naming just models because of the huge number of combinations
that can arise. Still here it is an attempt to name the tunes in a way that carries a certain degree of
meaning. The details still need to be checked on the single tune base. The first block is the parameter
block. Parameters are ideally divided by process and they are numbered accordingly. The numbering
scheme is:

01 Quasi Elastic and Elastic parameters

02 Pion production, RES - DIS transition region and non-RES background

03 Hadronisation average multiplicity

05 Reserved for other free-nucleons related parameters

... More possibilities are forseen but not yet identified

10 Parameters related to generation with compound nuclei

A “summing rule” is assumed to be possible: e.g. a tune with parameter block 11 is a tune of Elastic and
QuasiElastic parameters and nuclear parameters at the same time.

The dataset block is subdivieded so that each of the 3 digit has a meaning:

1 type of the dataset

2 Experiment or target

3 topology

The first digit decoding is as follows:

1 Integrated neutrino Cross sections

2 Differential neutrino cross sections

3 hadronization

4 electron scattering

0 all

Combinations are possible and they can use numbers or letters. Still nothing is decided at the moment.
Note the 0 as “all” is a general rule of the dataset block.

The experiment digit has a deconding which depends on the first digit so that numbers can be reused
properly, i.e.:

10 all integrated cross sections (as a consequence of the 0 = “all” rule)

11 deuterium datasets

12 ANL and BNL only

15 Integrated cross sections on heavy nuclei

... more values can be defined

21 Miniboone

3.4. GENIE TUNES 59

22 T2K

23 Minerva

... Possibly adding Microboone data here soon

31 Hadronisation data on Hydrogen

32 Hadronisation data on Deuterium

33 Hadronisation data on proton and deuterium

34 Hadronisation data on heavier nuclei (to be speficied)

... More possibilities to come

... All the code for first digit > 3 has yet to be defined

Letters are expected to be used for combinations, though the integrated cross section case should be
already detailed enough so that we don’t need further letters. For the differential cross sections we can
have 2a = 1+2, 2b = 1+3, 2c = 2+3, 2d = 1+2+3, etc.

The third digit can depend on both the previous ones, anyway an attempt to define it reguardless of
the previous digits is done:

0 is once again “all”

1 inclusive

2 0π or CCQE

3 1π

4 2π

6 charmed final state

9 ratios

Attempt to provide a general rule for the combinations is silly and they surely depend on a case by case
base.

3.4.1 Overview

Table 3.2: List of tunes in the v3 series of the GENIE / Generator.

Model / Tune name Brief description Vrs.
G00_00a_00_000 Historical tune of G00_00a comprehensive model configuration. 3.0.0 -
G00_00b_00_000 Historical tune of G00_00b comprehensive model configuration. 3.0.0 -

G
18

_
01

a

G18_01a_02_11a Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, and CC inclusive cross-section data.

3.0.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data.

3.2.0 -

60 CHAPTER 3. COMPREHENSIVE MODEL CONFIGURATIONS AND TUNES

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data, and a retune of the GENIE AGKY hadronization
model.

3.4.0 -

Global nuclear cross-section model tune (based on the
G18_01a_01_010 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.0.0 -

Similar to G18_01a_02_100, but tuning to MiniBooNE data only. 3.0.0 -
Similar to G18_01a_02_100, but tuning to T2K data only. 3.0.0 -
Similar to G18_01a_02_100, but tuning to MINERvA data only. 3.0.0 -
Global nuclear cross-section model tune (based on the
G18_01a_01_020 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.2.0 -

Similar to G18_01a_02_200, but tuning to MiniBooNE data only. 3.2.0 -
Similar to G18_01a_02_200, but tuning to T2K data only. 3.2.0 -
Similar to G18_01a_02_200, but tuning to MINERvA data only. 3.2.0 -
Global nuclear cross-section model tune (based on the
G18_01a_01_030 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.4.0 -

Similar to G18_01a_02_300, but tuning to MiniBooNE data only. 3.4.0 -
Similar to G18_01a_02_300, but tuning to T2K data only. 3.4.0 -
Similar to G18_01a_02_300, but tuning to MINERvA data only. 3.4.0 -

G
18

_
01

b

G18_01b_02_11a Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, and CC inclusive cross-section data.

3.0.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data.

3.2.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data, and a retune of the GENIE AGKY hadronization
model.

3.4.0 -

Global nuclear cross-section model tune (based on the
G18_01b_01_010 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.0.0 -

Similar to G18_01b_02_100, but tuning to MiniBooNE data only. 3.0.0 -
Similar to G18_01b_02_100, but tuning to T2K data only. 3.0.0 -
Similar to G18_01b_02_100, but tuning to MINERvA data only. 3.0.0 -
Global nuclear cross-section model tune (based on the
G18_01b_01_020 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.2.0 -

Similar to G18_01b_02_200, but tuning to MiniBooNE data only. 3.2.0 -
Similar to G18_01b_02_200, but tuning to T2K data only. 3.2.0 -
Similar to G18_01b_02_200, but tuning to MINERvA data only. 3.2.0 -

3.4. GENIE TUNES 61

Global nuclear cross-section model tune (based on the
G18_01b_01_030 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.4.0 -

Similar to G18_01b_02_300, but tuning to MiniBooNE data only. 3.4.0 -
Similar to G18_01b_02_300, but tuning to T2K data only. 3.4.0 -
Similar to G18_01b_02_300, but tuning to MINERvA data only. 3.4.0 -

G
18

_
02

a

G18_02a_02_11a Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, and CC inclusive cross-section data.

3.0.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data.

3.2.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data, and a retune of the GENIE AGKY hadronization
model.

3.4.0 -

Global nuclear cross-section model tune (based on the
G18_02a_01_010 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.0.0 -

Similar to G18_02a_02_100, but tuning to MiniBooNE data only. 3.0.0 -
Similar to G18_02a_02_100, but tuning to T2K data only. 3.0.0 -
Similar to G18_02a_02_100, but tuning to MINERvA data only. 3.0.0 -
Global nuclear cross-section model tune (based on the
G18_02a_01_020 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K ND280 and MINERvA).

3.2.0 -

Similar to G18_02a_02_200, but tuning to MiniBooNE data only. 3.2.0 -
Similar to G18_02a_02_200, but tuning to T2K data only. 3.2.0 -
Similar to G18_02a_02_200, but tuning to MINERvA data only. 3.2.0 -
Global nuclear cross-section model tune (based on the
G18_02a_01_030 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.4.0 -

Similar to G18_02a_02_300, but tuning to MiniBooNE data only. 3.4.0 -
Similar to G18_02a_02_300, but tuning to T2K data only. 3.4.0 -
Similar to G18_02a_02_300, but tuning to MINERvA data only. 3.4.0 -

G
18

_
02

b

G18_02b_02_11a Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, and CC inclusive cross-section data.

3.0.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data.

3.2.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data, and a retune of the GENIE AGKY hadronization
model.

3.4.0 -

62 CHAPTER 3. COMPREHENSIVE MODEL CONFIGURATIONS AND TUNES

Global nuclear cross-section model tune (based on the
G18_02b_01_010 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.0.0 -

Similar to G18_02b_02_100, but tuning to MiniBooNE data only. 3.0.0 -
Similar to G18_02b_02_100, but tuning to T2K data only. 3.0.0 -
Similar to G18_02b_02_100, but tuning to MINERvA data only. 3.0.0 -
Global nuclear cross-section model tune (based on the
G18_02b_01_020 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.2.0 -

Similar to G18_02b_02_200, but tuning to MiniBooNE data only. 3.2.0 -
Similar to G18_02b_02_200, but tuning to T2K data only. 3.2.0 -
Similar to G18_02b_02_200, but tuning to MINERvA data only. 3.2.0 -
Global nuclear cross-section model tune (based on the
G18_02b_01_030 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.4.0 -

Similar to G18_02b_02_300, but tuning to MiniBooNE data only. 3.4.0 -
Similar to G18_02b_02_300, but tuning to T2K data only. 3.4.0 -
Similar to G18_02b_02_300, but tuning to MINERvA data only. 3.4.0 -

G
18

_
10

a

G18_10a_02_11a Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, and CC inclusive cross-section data.

3.0.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data.

3.2.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data, and a retune of the GENIE AGKY hadronization
model.

3.4.0 -

Global nuclear cross-section model tune (based on the
G18_10a_01_010 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.0.0 -

Similar to G18_10a_02_100, but tuning to MiniBooNE data only. 3.0.0 -
Similar to G18_10a_02_100, but tuning to T2K data only. 3.0.0 -
Similar to G18_10a_02_100, but tuning to MINERvA data only. 3.0.0 -
Global nuclear cross-section model tune (based on the
G18_10a_01_020 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K ND280 and MINERvA).

3.2.0 -

Similar to G18_10a_02_200, but tuning to MiniBooNE data only. 3.2.0 -
Similar to G18_10a_02_200, but tuning to T2K data only. 3.2.0 -
Similar to G18_10a_02_200, but tuning to MINERvA data only. 3.2.0 -
Global nuclear cross-section model tune (based on the
G18_10a_01_030 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.4.0 -

Similar to G18_10a_02_300, but tuning to MiniBooNE data only. 3.4.0 -

3.4. GENIE TUNES 63

Similar to G18_10a_02_300, but tuning to T2K data only. 3.4.0 -
Similar to G18_10a_02_300, but tuning to MINERvA data only. 3.4.0 -

G
18

_
10

b

G18_10b_02_11a Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, and CC inclusive cross-section data.

3.0.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data.

3.2.0 -

Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, CC inclusive and normalised topological
cross-section data, and a retune of the GENIE AGKY hadronization
model.

3.4.0 -

Global nuclear cross-section model tune (based on the
G18_02b_01_010 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.0.0 -

Similar to G18_10b_02_100, but tuning to MiniBooNE data only. 3.0.0 -
Similar to G18_10b_02_100, but tuning to T2K data only. 3.0.0 -
Similar to G18_10b_02_100, but tuning to MINERvA data only. 3.0.0 -
Global nuclear cross-section model tune (based on the
G18_10b_01_020 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.2.0 -

Similar to G18_10b_02_200, but tuning to MiniBooNE data only. 3.2.0 -
Similar to G18_10b_02_200, but tuning to T2K data only. 3.2.0 -
Similar to G18_10b_02_200, but tuning to MINERvA data only. 3.2.0 -
Global nuclear cross-section model tune (based on the
G18_10b_01_030 free nucleon cross-section model re-tune) using
neutrino and antineutrino CC0π and CC1π data on Carbon (from
MiniBooNE, T2K and MINERvA).

3.4.0 -

Similar to G18_10b_02_300, but tuning to MiniBooNE data only. 3.4.0 -
Similar to G18_10b_02_300, but tuning to T2K data only. 3.4.0 -
Similar to G18_10b_02_300, but tuning to MINERvA data only. 3.4.0 -

G
18

_
10

i G18_10i_02_11a Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, and CC inclusive cross-section data

3.0.0 -

Copies parameters of the G18_10a_02_200 tune. 3.2.0 -
Copies parameters of the G18_10a_02_300 tune. 3.4.0 -

G
18

_
10

j G18_10j_02_11a Free nucleon cross-section model re-tune using mainly bubble chamber
CCQE, CC1π, CC2π, and CC inclusive cross-section data

3.0.0 -

Copies parameters of the G18_10b_02_200 tune. 3.2.0 -
Copies parameters of the G18_10b_02_300 tune. 3.4.0 -

...

3.4.2 General strategy for free-nucleon cross-section model tuning

3.4.2.1 Modeling the transition region

As discussed, for example, by Kuzmin, Lyubushkin and Naumov [88] one typically considers the total
νN CC scattering cross section as

σtot = σQEL ⊕ σ1π ⊕ σ2π ⊕ ...⊕ σ1K ⊕ ...⊕ σDIS

64 CHAPTER 3. COMPREHENSIVE MODEL CONFIGURATIONS AND TUNES

In the absence of a model for exclusive inelastic multi-particle neutrinoproduction, the above is usually
being approximated as

σtot = σQEL ⊕ σRES ⊕ σDIS

assuming that all exclusive low multiplicity inelastic reactions proceed primarily through resonance
neutrinoproduction. For the sake of simplicity, small contributions to the total cross section in the few
GeV energy range, such as coherent and elastic νe− scattering, were omitted from the expression above.
In this picture, one should be careful in avoiding double counting the low multiplicity inelastic reaction
cross sections.

In GENIE release the total cross sections is constructed along the same lines, adopting the proce-
dure developed in NeuGEN [6] to avoid double counting. The total inelastic differential cross section is
computed as

d2σinel

dQ2dW
= d2σRES

dQ2dW
+ d2σDIS

dQ2dW

The term d2σRES/dQ2dW represents the contribution from all low multiplicity inelastic channels
proceeding via resonance production. This term is computed as

d2σRES

dQ2dW
=
∑
k

(d2σR/S

dQ2dW

)
k
·Θ(Wcut−W)

where the index k runs over all baryon resonances taken into account,Wcut is a configurable parameter
and (d2σRSνN/dQ

2dW)k is the Rein-Seghal model prediction for the kth resonance cross section.
The DIS term of the inelastic differential cross section is expressed in terms of the differential cross

section predicted by the Bodek-Yang model appropriately modulated in the “resonance-dominance" region
W < Wcut so that the RES/DIS mixture in this region agrees with inclusive cross section data [89, 90,
91, 92, 93, 94, 95, 96, 97, 98] and exclusive 1-pion [99, 100, 101, 102, 103, 104, 105, 106, 107, 96, 108] and
2-pion [109, 103] cross section data:

d2σDIS

dQ2dW
=

d2σDIS,BY

dQ2dW
·Θ(W −Wcut) +

+
d2σDIS,BY

dQ2dW
·Θ(Wcut−W) ·

∑
m

fm

In the above expression, m refers to the multiplicity of the hadronic system and, therefore, the factor
fm relates the total calculated DIS cross section to the DIS contribution to this particular multiplicity
channel. These factors are computed as fm = Rm·Phadm where Rm is a tunable parameter and Phadm is the
probability, taken from the hadronization model, that the DIS final state hadronic system multiplicity
would be equal to m. The approach described above couples the GENIE cross section and hadronic
multiparticle production model [110].

3.5. CRITICAL EVALUATION OF GENIE COMPREHENSIVE MODELS AND TUNES - OPPORTUNITIES FOR IMPROVEMENT AND FUTURE WORK65

3.4.3 General strategy for nuclear cross-section model tuning

3.4.4 Discussion of tunes
3.4.4.1 Discussion of G18_01* tunes

3.4.4.2 Discussion of G18_02* tunes

3.4.4.3 Discussion of G18_10* tunes

3.4.4.4 Comparison of GENIE tunes

3.5 Critical evaluation of GENIE comprehensive models and tunes
- Opportunities for improvement and future work

3.6 GENIE comprehensive model and tune recommendations

3.7 BSM CMC and tunes
Operations related to BSM physics usually requires dedicated configurations. Some reasoanbly standard
configurations are prepared for the users in the form of a tune. This section lists some relevant one and
their important parameters.

3.7.1 Dark Neutrino tunes
The CMC used for Dark neutrinos are composed of all the interactions that are available for dark
current interactions, for the physics details see Section 2.3.11.1. Dark neutrino CMCs take the form
“GDNu20_01a” so simply the tipical initial “G” is replaced by “GDNu”.

Dark neutrino physics depends on few parameters: dark neutrino and mediator masses, mixing angles
and couplings for the dark sector. The default values for these parameters are the result of MiniBooNE ex-
cess fit [42], no dedicated tunes are available at the moment. For the kind of physics analysis done for BSM
searches, it is expected that the user changes the values of the parameters according to the region to be ex-
plored. All the parameters are contained in a dedicated common file: ‘$GENIE/config/CommonDark.xml ’.

3.7.2 Boosted Dark Matter tunes

66 CHAPTER 3. COMPREHENSIVE MODEL CONFIGURATIONS AND TUNES

Part II

Software Framework of the GENIE
Suite of Products

67

Chapter 4

The GENIE Generator

4.1 Introduction

The key requirement of the GENIE Core Framework (CFWK) is to transparently decouple the high-
level code focusing on physics simulations from the low-level structures involved primarily with memory
management and configuration. The framework was developed and reviewed primarily within the MINOS
experiment and, inevitably, has been influenced by the MINOS offline software design. In developing the
GENIE framework we recycled, adapted and extended key features of the MINOS offline framework.
We drew heavily from the accumulated software engineering experience encapsulated within popular
software design patterns, including the Visitor, Chain of Responsibility, Factory, Strategy and Singleton.
The CFWK is not specific to the subject matter domain of GENIE and could be adapted and reused
in other scientific computing applications. The GENIE Event Generation Framework (EFWK), to be
discussed later, is a subject-matter-specific layer built on top of the CFWK.

4.2 Source code, configuration and data file organisation

The Generator source code is organised in 3 main groups of packages:

• Framework
Includes several packages that implement the key interaction, particle and event data structures
as well as the CFWK and the EFWK. A description of the framework is the main topic of this
chapter.

• Physics
Includes an extensive set of packages implementing state-of-the-art neutrino interaction physics
modules. Typically, in the Physics group of packages, code is organised per reaction process.
In this category we find the AnomalyMediatedNuGamma, Charm, Coherent, DeepInelastic, Diffrac-
tive, GlashowResonance, InverseBetaDecay,Multinucleon, NuElectron, QuasiElastic, Resonance and
Strange packages. Within each such package that holds all GENIE code relevant for the simulation
of a specific process, code is organised in 2 sub-packages: XSection and EventGen. The former
sub-package includes all code used for the calculation of the cross-section predicted by a number of
alternative models for that given process. It also includes code for all the calculation of the inter-
mediate quantities (form factors, structure functions etc) required for a cross-section calculation.
The later includes all code that, starting from a particular cross-section model, simulates an event
for that particular process. The event generation code for a process is typically, but not always,

69

70 CHAPTER 4. THE GENIE GENERATOR

model agnostic. The underlying simulation code for the simulation of the nuclear environment is in-
cluded in the NuclearState and NuclearDeExcitation package. Code for modelling neutrino-induced
hadronization lives in the Hadronization package, while intranuclear hadron transport code that
is used for the simulation of most processes can be found in the HadronTransport package. The
Decay package includes all code for the decay of unstable particles and resonances. The PartonDis-
tributions package includes interfaces to parton disribution function (p.d.f.) libraries (LHAPDF5,
LHAPDF6), or built-in implementations for commonly used p.d.f. sets. The MuonEnergyLoss
package contains modules that allow the calculation of muon energy loss in several materials and
enable GENIE tools for the efficient simulation of atmospheric neutrino-induce upgoing muons.
Finally the Common and XSectionIntegration packages include, respectively, common event gener-
ation code recycled by several generators and an interface to the GNU Scientific Library for the
numerical integration of differential neutrino cross-sections. The key features of the the neutrino
interaction physics modules implemeted in GENIE and the construction, out of all these modules, of
comprehensive neutrino interaction modules was outlines in Part I, Chapters 2 and 3. In addition,
GENIE includes modules for the simulation of charged lepton - nucleon/nucleus scattering, photon
- nucleus scattering, hadron - nucleus scattering, boosted dark matter, nucleon decay and n − n̄
oscillations. Some physics modules for the simulation of non-neutrino GENIE events live within the
BoostedDarkMatter, NucleonDecay and NNBarOscillation physics packages, but several required
modules are identical to the ones used for the simulation of neutrino events and live within the
packages listed earlier in this section. The physics modules used for the simulation of non-neutrino
events in GENIE are described in Part IV.

• Tools
Includes implementations of flux drivers (Flux package) and detector geometry navigation drivers
(Geometry package) that can be used, on top of the standard GENIE physics modules, to build
event generation applications for realistic experimental setups. These tools are described in detail
in Chapter 8. In addtion, it includes a the ReWeight package which implements strategies for
propagating a partial list of neutrino interaction uncertainties. A description of the strategies
implemented in the ReWeight package, caveats in its usage and its relation with the GENIE tunes
and uncertaintu evaluations is described in Chapter 17.

Table 4.1: Packages in the GENIE Generator product.

Group Package Sub-packages Description

Framework

Algorithm
Conventions
EventGen
GHEP

Interaction
Messenger
Ntuple

Numerical
ParticleData

Utils

Physics

AnomalyMediatedNuGamma EventGen,
XSection

BoostedDarkMatter EventGen,
XSection

4.3. CORE FRAMEWORK 71

Table 4.1: Packages in the GENIE Generator product.

Group Package Sub-packages Description

Charm EventGen,
XSection

Coherent EventGen,
XSection

Common
Decay

DeepInelastic EventGen,
XSection

Diffractive EventGen,
XSection

GlashowResonance EventGen,
XSection

Hadronization
HadronTransport
InverseBetaDecay EventGen,

XSection
Multinucleon EventGen,

XSection
MuonEnergyLoss
NNBarOscillation

NuclearDeExcitation
NuclearState
NucleonDecay
NuElectron EventGen,

XSection
PartonDistributions

QuasiElastic EventGen,
XSection

Resonance EventGen,
XSection

Strange EventGen,
XSection

XSectionIntegration

Tools

Flux
Geometry
Masterclass
ReWeight

4.3 Core framework

4.3.1 Algorithms
4.3.1.1 Key concepts

The CFWK concerns itself mainly with the properties, instantiation and memory management of software
abstractions called Algorithms. The Algorithm is a key CFWK abstraction. The notion of an ‘algorithm’

72 CHAPTER 4. THE GENIE GENERATOR

in an object-oriented system requires further clarification as it does not correspond to its more familiar
notion in the context of procedural software systems. In the CFWK, the Algorithm encapsulates the
common behavior of all algorithmic objects. It is an abstract base class which defines exactly how
algorithmic objects are to be initialized and configured, how they are to look up their configuration,
how they are to be identified, and how they report their status. These are common, largely operational
features that characterize a very heterogeneous collection of algorithms such as cross section models,
hadronization models, particle decayers, form factor and structure function models, event generation
modules and threads and other types of algorithms that can be found within GENIE. The kind of
computation to be performed, the usual identifying feature of an algorithm in a procedural system,
is a secondary characteristic at this level of abstraction. At the next level up from the Algorithm
root of an algorithm inheritance tree, we find a set of standardized interfaces which defines how to
invoke each specialized type of calculation and retrieve its results. Numerous such specialized algorithm
interfaces exist within GENIE. Examples include the GFluxI interface implemented by flux drivers, the
XSecAlgorithmI interface implemented by cross-section models, and the EventRecordVisitorI interface
implemented by event generation modules. Invoking all algorithms through such standardized interfaces
guarantees scalability and ensures the seamless integration of new concrete implementations.

4.3.1.2 Algorithm configuration

4.3.1.3 Algorithm nesting

4.3.1.4 The Algorithm interface

• virtual void Configure (const Registry & config)
This method configures the algorithm using an input registry. It can be invoked multiple times and
add a number of registries to the current algorithm. The order by which registries are supplied to
the algorithm determines the registry priority. In case that a required configuration parameter is
found in multiple input registries, the one that was input first has priority.

• virtual void Configure (string config)
This method configures the algorithm using registries created from parameter sets stored in the
GENIE XML configuration files. The registries created from these parameter sets can be found in
the common pool of registries stored within the AlgConfigPool singleton. As it is already explained,
an algorithm can be configured by a list of registries containing parameters originating from different
sources. Each such registry with a well defined priority ordering. This method uses the following
registries listed in order of priority (high to low):

1. A registry corresponding to the “Tunable” parameter set read from $GENIE/config/CommonParam.xml.
Use of this registry at the highest prioriry is designed for use in the GENIE tuning procedure
and solely for the purpose of maintaining compatibility with existing tuning infrastructure for
the automatic generation of GENIE configurations for brute-force parameter scans. It does
not provide a mechanism for deploying tunes and such a parameter set will not be distributed
in public GENIE releases. Likewise, users should avoid using creating a parameter set at this
priority level.

2. One registry for each parameter set defined in optional configuration string with name Com-
mon<XXX>, where <XXX> is a string. These configuration variables are defined in the
XML configuration file of that particular algorithm. If any exists at all, the Common<XXX>
field can include a comma-separated list of parameter sets. The corresponding parameter sets
are read from $GENIE/config/Common<XXX>.xml. The registries are loaded in the order of
the parameter set listing. E.g. the line “<param type="string" name="CommonParam">

4.3. CORE FRAMEWORK 73

Coherent,CKM </param>” will load two parameter sets, called Coherent and CKM from the
xml file CommonParam.xml.

3. A registry corresponding to the parameter set named by the input config argument. This set
is defined in the XML configuration file of that particular algorithm.

4. If the input argument is not “Default”, then a registry created by an optional “Default” param-
eter set defined in the XML configuration file of that particular algorithm is loaded with the
lowest priority.

• virtual void FindConfig (void)

• virtual const Registry & GetConfig(void) const
Returns a registry with the algorithm configuration. Since an algorithm can be configured by a
list of registries containing parameters originating from different sources and with different priority
ordering, returning a single registry requires the amalgamation of all configuration components.
As may expected, in case of multiple occurences of the same configuration variable in several
concurrently used registries, the amalgamated registry includes only the instance with the highest
priority.

• virtual Registry * GetOwnedConfig(void) - now deprecated

• virtual const AlgId & Id(void) const

• virtual AlgStatus_t GetStatus(void) const

• virtual bool AllowReconfig(void) const

• virtual AlgCmp_t Compare(const Algorithm * alg) const

• virtual void SetId(const AlgId & id)

• virtual void SetId(string name, string config)

• const Algorithm * SubAlg(const RgKey & registry_key) const

• void AdoptConfig (void)
Clones the configuration registries used from the shared registry pool and take ownership of the
clones.

• void AdoptSubstructure (void)
Take ownership of any algorithm substructure by copying them from the shared AlgFactory pool
to a local pool. It also brings all the configuration variables (defined in the registries of nested
algorithms) up to the top level configuration registry. This can be used to group together a series
of algorithms and their configurations and extract (a clone of) this group from the shared pools.
Having a series of algorithms and configurations behaving as a monolithic block that does not
interact inadvertently with the rest of the GENIE system and with a single point of access for the
configuration of all nested algorithms can find usage in data fitting or reweighting applications.

• virtual void Print(ostream & stream) const

74 CHAPTER 4. THE GENIE GENERATOR

4.3.2 Registry

4.3.3 Algorithm configuration system

The algorithmic objects are stateless and their behavior is fully externally configured. The algorithm
configurations are stored in XML files. Typically, there is a single XML configuration file per algorithm.
Each file may contain multiple configuration sets for that algorithm with each configuration set being
uniquely identified by a name. The algorithm configuration variables can be of many different types
(including booleans, integers, real numbers, strings, ROOT 1-D or 2-D histograms, ROOT n-tuples/trees
or other GENIE algorithms with their own configurations). Each configuration variable, in a given set,
is uniquely identified by a name. During the initialization phase, all XML configuration files are parsed
and each named configuration set is stored at a type-safe ‘value’ → ‘type’ associative container called
the Registry. All Registry objects instantiated in initialization phase are stored in a shared pool called
the AlgConfigPool. A unique name is being used to identify each Registry in that pool. The name is
constructed by the name of the configuration set, the name of the algorithm the configuration is intended
for and the namespace that the algorithm lives in, as ‘namespace::algorithm-name/configuration-name’.
At run-time each algorithmic object can look up its configuration set by accessing the corresponding
Registry object. Please take a moment to read the details of the Algorithm::Configure(string config)
method in section 4.3.1.4 as it contains the detail of the registry loaded by each algorithm.

The xml files structure in GENIE allows to easily define vectors of any type mentioned in the previous
paragraph. The type needs to start with the string “vec-” followed by the type of the item contained in
the vector. Also an new string attribute called “delim” is needed to split the entry of the parameter. Once
this is done the content of the parameter is decomposed in substrings according to the definition of the
delimiter. For each substring an entry of the corresponding type is created in the registry with the name
of the vector followed by “-” and the number of the entry. Also, an integer entry is added to the registry to
indicate the number of entries of the vector. The name of the entry is the concatenation of “N”, name of the
vector and “s”. For example. The entry “<param type="vec-double" name="Delta-R33" delim=";"> 0.75
; 0.6 </param>“ corresponds to 3 entries in the xml files: “<param type="double" name="Delta-R33-
0"> 0.75 </param>“, “<param type="double" name="Delta-R33-1"> 0.6 </param>“ and “<param
type="int" name="NDelta-R33s"> 2 </param>“.

One feature of the GENIE configuration system is especially worth noting. Algorithm configuration
sets may include other algorithms (with their own configurations, which in turn may contain more al-
gorithms). GENIE’s extensibility and flexibility is largely due to this feature in conjunction with the
standardization of the algorithm interfaces. In the actual GENIE code one only needs define a call
sequence between abstract algorithm-types such as, for example, that an algorithm-type specialized in
generating scattering kinematics, invokes another algorithm-type specialized in cross section calculations
which, in its turn, should invoke another algorithm type specialized in form factor calculations. Once
that call sequence has been defined in the code, many concrete realizations may come into being purely
at the configuration level by specifying the names of the concrete algorithms and the names of their
configuration sets.

Typically, pre-configured instances of GENIE algorithms are accessed through an algorithm factory
which is responsible for instantiating each algorithm (upon request) and allowing it to look up its config-
uration. The factory typically owns and manages the list of all instantiated concrete algorithms. Since
algorithms are stateless objects, further requests for an instantiated concrete algorithm results in the
previously instantiated algorithm being returned rather than a new one being created.

By default all instantiated concrete algorithms and configurations are stored within shared pools
designed as singletons . As these are shared pools, modifications have global effects. For example,
modifying a low-level algorithm configuration modifies all call sequences that include that algorithm. This
is desirable in most contexts, such as for example for the consistent propagation of physics parameter
changes throughout GENIE. There are certain situations, however, such as fitting or event reweighting

4.3. CORE FRAMEWORK 75

applications, where this may be not be a desirable feature. The GENIE Core Framework allows algorithms
to clone and assume ownership of the entire sequence of sub-algorithms they depend upon, along with
each sub-algorithm’s configuration registries. That cloned call-sequence of algorithmic objects is stored
in a local rather than a shared pool. In this way, concrete top-level algorithms behave as self-contained
capsules and can be re-configured in isolation without affecting other GENIE components.

4.3.3.1 Special XML files and organization of the config directory

There are some special XML files that don’t correspond to a specific algorithm but whose information
is loaded and accessible from AlgConfigPool methods CommonParameterList(const string & name),
GlobalParameterList() and TuneGeneratorList(). The first method allows the acces to what is stored in
$GENIE/config/CommonParameters.xml, see section 4.3.1.4. The others are required to correctly define
a GCMC, see chapter 3 and therefore there is one in each CMC subdirectory.

GlobalParameterList() is the access to the ModelConfiguration.xml which assings a model and its
configuration to each event generator.

TuneGeneratorList() is the access to TuneGeneratorList.xml which is the Defult list of event genera-
tors to be used for a given tune.

4.3.4 Message logging system

The message logging system is based on the log4cpp library. GENIE provides the Messenger class which
enforces common formatting for messages emitted by GENIE classes and provides an easier interface to
the log4cpp library. Messages are sent using one of the

• LOG(stream, priority),

• LOG_FATAL(stream),

• LOG_ALERT(stream),

• LOG_CRIT(stream),

• LOG_ERROR(stream),

• LOG_WARN(stream),

• LOG_NOTICE(stream),

• LOG_INFO(stream)

• LOG_DEBUG(stream)

Messenger macros as shown in 4.1. Each message is assigned a priority level (see Table 4.2) that can be
used for message filtering using the

void genie::Messenger::SetPriorityLevel(const char * stream log4cpp::Priority::Value priority)

method as shown in 4.1. Each message is ’decorated’ with its time stamp, its priority level, its stream
name and the name space / class name / method name / line of code from where it was emitted

time priority stream name : <method signature (line of code)> : actual message

76 CHAPTER 4. THE GENIE GENERATOR

Message Priority Levels
pFATAL
pALERT
pCRIT

pERROR
pWARN
pNOTICE
pINFO

pDEBUG

Table 4.2: Priority levels in GENIE / log4cpp shown in decreasing importance.

Algorithm 4.1 Example use of the GENIE / log4cpp message logging.
{

...
LOG(“stream-name”, pFATAL) << “ a fatal message”;
LOG(“stream-name”, pERROR) << “ an error message”;
LOG(“stream-name”, pWARN) << “ a warning”;

// alternative ways to send messages
LOG_ERROR(“stream-name”) << “ another error message”;
LOG_WARN(“stream-name”) << “ another warning”;
...
Messenger * msg = Messenger::Instance(); // get a messenger instance
...
msg->SetPriorityLevel(“stream-name”,pERROR); // set message threshold to ’ERROR’
...
LOG(“stream-name”, pALERT) << “ an alert – passes the message thershold”;
LOG(“stream-name”, pDEBUG) << “ a debug message – filtered / not shown”;
...

}

For example:

10891167 ERROR Config:<bool genie::ConfigPool::LoadXMLConfig() (100)>: Parsing failed

4.4 Event generation framework

4.4.1 Data structures: Particles, Events and Interactions

4.4.1.1 System of units

In this section three key framework classes, the GHepParticle, GHepRecord, and the Interaction classes,
are described. GENIE is using the natural system of units $(\hbar=c=1)$ so almost every simulated
quantity is expressed in powers of [GeV]. Exceptions are the event vertex in the detector coordinate
system (in SI units) and particle positions in the hit nucleus coordinate system (in fm). Different units
may be employed when native GENIE event descriptions are converted to experiment-specific formats in
accordance with the format specification.

4.4. EVENT GENERATION FRAMEWORK 77

4.4.1.2 Particles

The basic output unit of the event generation process is a particle. This is a term used to describe
both particles and nuclei appearing in the initial, intermediate or final state, as well as generator-specific
pseudo-particles used for facilitating book-keeping of the generator actions. Each such particle generated
by GENIE is an instance of the GHepParticle class. These objects contain information with particle-
scope including: particle ID and status codes, PDG mass, charge, name, indices of mother and daughter
particles marking possible associations with other particles in the same event, 4-momentum, 4-position in
the target nucleus coordinate system, polarization vector, and other properties. The GHepParticle class
includes methods for setting and querying these properties.

GENIE has adopted the standard PDG particle codes . For ions it has adopted a PDG extension,
using the 10-digit code 10LZZZAAAI where L is the number of strange quarks ZZZ is the total charge,
AAA is the total baryon number, and I is the isomer number (I=0 corresponds to the ground state).
GENIE-specific pseudo-particles have PDG code >= 2000000000 and can convey important information
about the underlying physics model. Pseudo-particles generated by other specialized programs that may
be called by GENIE (such as PYTHIA-6) are allowed to retain the codes specified by that program.

GENIE obtains particle data (including particle names, codes, masses, widths, decay channels and
more) using the ROOT’s TDatabasePDG. This particle data-base manager object is initialized with the
constants used in PYTHIA-6. The data-base has been augmented by the GENIE authors to include
baryon resonances, nuclei and GENIE-specific pseudo-particles. .

GENIE marks each particle with a status code. This signifies the position of a particle in a time-
ordering of the event and helps navigation within the event record. Most generated particles are marked
as one of the following:

• ‘initial state’, typically the first two particles of the event record corresponding to the incoming
neutrino and the nuclear target.

• ‘nucleon target’, corresponding to the hit nucleon (if any) within the nuclear target.

• ‘intermediate state’, typically referring to the remnant nucleus, fragmentation intermediates such
as quarks, diquarks, or intermediate pseudo-particles.

• ‘hadron in the nucleus’, referring to a particle of the primary hadronic system, defined as the
particles emerging from the primary interaction vertex before any possible re-interactions in the
nucleus.

• ‘decayed state’, such as for example unstable particles that have been decayed. \item ‘stable final
state’ for the relatively long-lived particles emerging from the nuclear targets.

All particles generated by GENIE during the simulation of a single neutrino interaction are stored in a
dynamic container representing an ‘event’.

4.4.1.3 Events

Events generated by GENIE are stored in a custom, STDHEP-like event record called a GHEP record.
Each GHEP event record, an instance of the GHepRecord class, is a ROOT TClonesArray container of
GHepParticle objects representing individual particles.

Other than being a container for the generated particles, the event record holds additional information
with event-, rather than particle-, scope such as the cross sections for the selected event, the differential
cross section for the selected event kinematics, the event weight, a series of customizable event flags, and
interaction summary information (described in the next section).

78 CHAPTER 4. THE GENIE GENERATOR

Additionally, the event record includes a host of methods for querying / setting event properties
including many methods that allow querying for specific particles within the event. Examples include
methods to return the target nucleus, the final state primary lepton, or a list of all stable descendants of
any intermediate particle.

The event record features a ‘spontaneous re-arrangement’ feature which maintains the compactness of
the daughter lists at any given time. This is necessary for the correct interpretation of the stored particle
associations as the daughter indices correspond to a contiguous range. The particle mother and daughter
indices for all particles in the event record are automatically updated as a result of any such spontaneous
particle rearrangement.

The event generation itself is built around the GHEP event record using the Visitor design pattern .
The interaction between the GHEP event record and the event generation code will be outlined in the
following sections.

The GHEP structure is highly compatible with the event structures used in most HEP generators.
That allows us to call other generators, such as PYTHIA-6, as part of an event generation chain and
convert / append their output into the current GHEP event. Additionally the GHEP events can be
converted to many other formats for facilitating the GENIE interface with experiment-specific offline
software systems and cross-generator comparisons.

Idx Name ISt PDG Mom Kids E px py ...
0 nu_mu 0 14 -1 4 4
1 Fe56 0 1000260560 -1 2 3
2 neutron 11 2112 1 5 7
3 Fe55 2 1000260550 1 10 10
4 mu- 1 13 0 -1 -1
5 HadrSyst 12 2000000001 2 -1 -1
6 proton 14 211 2 -1 -1
7 pi0 14 111 2 8 9
8 proton 1 22 7 -1 -1
9 pi- 1 -211 7 -1 -1
10 HadrBlob 15 2000000002 3 -1 -1

Table 4.3: []

4.4.1.3.1 Logical structure of events

4.4. EVENT GENERATION FRAMEWORK 79

Idx Name ISt PDG Mom Kids E px py ...
0 nu_mu 0 14 -1 5 5
1 Fe56 0 1000260560 -1 2 3
2 proton 11 2212 1 4 4
3 Mn55 2 1000250550 1 12 12
4 Delta++ 3 2224 2 6 7
5 mu- 1 13 0 -1 -1
6 proton 14 2112 4 8 8
7 pi+ 14 211 4 11 11
8 proton 3 2212 6 9 10
9 proton 1 2212 8 -1 -1
10 proton 1 2212 8 -1 -1
11 pi+ 1 211 7 -1 -1
12 HadrBlob 15 2000000002 3 -1 -1

Table 4.4:

Idx Name ISt PDG Mom Kids E px py ...
0 nu_mu 0 14 -1 4 4
1 Fe56 0 1000260560 -1 2 3
2 neutron 11 2112 1 5 5
3 Fe55 2 1000260550 1 22 22
4 mu 1 13 0 -1 -1
5 HadrSyst 12 2000000001 2 6 7
6 u 12 2 5 88
7 ud_1 12 2103 5 -1-1
8 string 12 92 6 9 11
9 pi0 14 111 8 1414
10 proton 14 2212 8 15 15
11 omega 12 223 8 12 13
12 pi- 14 -211 11 16 16
13 pi+ 14 211 11 21 21
14 pi0 1 111 9 -1 -1
15 proton 1 2212 10 -1 -1
16 pi- 3 -211 12 17 20
17 neutron 1 2112 16 -1 -1
18 neutron 1 2112 16 -1 -1
19 proton 1 2212 16 -1 -1
20 proton 1 2212 16 -1 -1
21 pi+ 1 211 13 -1 -1
22 HadrBlob 15 2000000002 3 -1 -1

Table 4.5:

80 CHAPTER 4. THE GENIE GENERATOR

Algorithm 4.2 Instantiating Interaction objects for driving physics models is streamlined using the
‘named constructor’ C++ idiom. For example, in order to define a 5 GeV CCQE νµ+n interaction,
where the neutron is bound in a 56Fe nucleus (νµ PDG code: 14, n PDG code: 2112, 56Fe PDG code:
1000260560) one needs to call the above named constructor’. This instantiated interaction object (qelcc)
can be used to drive a CCQE cross-section algorithm in GENIE.
{

...
Interaction * qelcc = Interactions::QELCC(1000260560, 2112, 14, 5.0);
...

}

4.4.1.4 Interactions

The GHEP record represents the most complete description of a generated event. Certain external
heavy-weight applications such as specialized event reweighting schemes or realistic detector simulation
chains using the generator as the physics front-end require all of the detailed particle-level information.
However, many of the actual physics models employed by the generator, such as cross section, form factor,
or structure function models, require a much smaller subset of information about the event.

An event description based on simple summary information, typically including a description of the
initial state, the process type and the scattering kinematics, is sufficient for driving the algorithmic
objects implementing these physics models. In the interest of decoupling the physics models from event
generation and the particle-level event description, GENIE uses an Interaction object to store summary
event information. Whenever possible, algorithmic objects implementing physics models accept a single
Interaction object as their sole source of information about an event. This enables the use of these models
both within the event generation framework but also within a host of external applications such as model
validation frameworks, event re-weighting tools and user physics analysis code.

An Interaction object is an aggregate, hierarchical structure, containing many specialized objects
holding information for the initial state (InitialState object), the event kinematics (Kinematics object),
the process type (ProcessInfo object) and potential additional information for tagging exclusive channels
(XclsTag object). Instantiating Interaction objects for driving physics models is streamlined using the
‘named constructor’ C++ idiom.

They can be serialized into unique string codes which, within the GENIE framework, play the role of
the ‘reaction codes’ of the old procedural systems. These string codes are used extensively for mapping
information to interaction types. Two examples include mapping interaction types to pre-computed cross
section splines or mapping interaction types to specialized event generation code. Each generated event
has an Interaction summary object already attached to it.

4.4.2 Event generation processing units: Modules, Threads and Drivers

On an operational level the responsibility for generating events is shared between event generation drivers,
threads and modules. Tasks are delegated from event generation drivers to threads, and from threads
to modules. Event generation drivers can include multiple threads, and threads can include multiple
modules. Event generation drivers are responsible for generating events for a particular user-defined
situation. These can be as simple as monoenergetic neutrinos interacting off a single target, to complex
situations involving the output of realistic beam-line simulations and full detector geometry descriptions.
Threads are responsible for generating the physics of particular classes of events, for instance charged-
current quasielastic. Modules carry out a single step in that generation process. The responsibilities of
each and their collaboration during event generation are outlined next.

4.4. EVENT GENERATION FRAMEWORK 81

4.4.2.1 Event generation modules

An event generation module is a key event generation abstraction. Each event generation module en-
capsulates a well defined event generator operation which, in physics terms, can be any of a very diverse
set of actions. Examples include selecting the scattering kinematics, generating the final state primary
lepton or the primary hadronic system, transporting hadrons within the target nucleus, and decaying
unstable particles.

Operationally, event generation can be seen as a series of well-defined processing steps operating on
the GHEP event record. The act of operating on the event record defines an interface that is encapsulated
by the EventRecordVisitorI abstract class. As it is indicated by the interface name, the Visitor design
pattern is being employed . Concrete event generation modules, implementing the EventRecordVisitorI
interface, ‘visit’ the event record. The event record then invokes each attached module and is modified
as a result.

Due to the diversity of the event processing operations that must be considered by GENIE, we formed
the event generation module abstraction focusing on the common operational aspect of (potentially)
modifying the event record. This represents the most generic way of thinking about event generation
and guarantees that any future physics addition, especially ones not envisioned at this stage of the
generation evolution, can be trivially embedded into the existing framework. Treating the event generator
modules uniformly and standardizing on the event generation module interface allows us to build a
flexible and extensible system where modules can be dynamically plugged in/out of the event generation
or interchanged. Examples can further clarify the utility of this abstraction: a module handling a set
of particle decays can be unplugged to inhibit those decays, or a module handling intra-nuclear hadron
transport may be swapped with another module performing the same operation using a different physics
strategy.

Whenever possible event generation modules are written in a generic way, containing code imple-
menting just the neutrino event generation mechanics. The actual physics model itself is specified in the
generation module configuration. This decoupling of mechanics from models greatly simplifies code devel-
opment, transparency, and physics validation, simplifying the overall structure and reducing the amount
of code that needs to be actively developed and scrutinized between successive releases. An example
will clarify this factorization: The module selecting the kinematics for deep-inelastic neutrino-nucleon
interactions does not contain the actual code for the deep-inelastic differential cross section. It merely
contains code to calculate the allowed kinematical phase space for the process, select a point in that phase
space using a Monte Carlo acceptance / rejection method, and update the GHEP record accordingly. The
actual differential cross section model used during the Monte Carlo selection is an external physics model
invoked by the event generation module. The module itself can be recycled many times by instructing it
to call a different cross section model each time. As a result of that factorization, multiple call sequences
can be defined purely at the configuration level without code duplication.

4.4.2.2 Event generation threads (Event generators)

An event generation thread is an ordered sequence of processing steps, encapsulated by event generation
modules, that can be applied to an empty GHEP event record to completely generate some class of
physics events. This process defines an interface that is encapsulated by the EventGeneratorI abstract
class. Within the GENIE event generation framework the structures containing a comprehensive set of
instructions for generating a class of physics events are concrete EventGeneratorI objects.

GENIE defines a comprehensive set of event generation threads responsible for generating event types
at the level of fundamental interactions. The complete set of these event generation threads comprises
GENIE’s full ‘physics content’ for event generation. As an event generation thread can generate a single
class of events only, there are usually multiple threads in use.

82 CHAPTER 4. THE GENIE GENERATOR

The class of physics events generated by a thread can have an arbitrary granularity, from a single
interaction corresponding to a particular process type with a given final state to very broad event cat-
egories. Each thread contains an InteractionList object, a container containing a list of the Interaction
objects the thread can generate. The InteractionList plays a crucial role in identifying the responsibilities
of each thread within the GENIE framework. Once an event type to be generated has been selected, a
corresponding Interaction object is instantiated. Following the Chain of Responsibility design pattern ,
GENIE attempts to match the Interaction object with an element of the \em InteractionList contain-
ers for all active threads. The first thread found that is able to handle that event type is handed the
responsibility to generate the event.

Additionally, event generation threads include an instance of the cross section algorithm that can
be used for selecting the event kinematics or for computing the probability for a particular neutrino to
interact. This is another example of separating mechanics from models and serves to greatly simplify the
dynamic mapping between event types and cross section models.

Once a list of threads has been loaded into the generator, many high-level event generation operations
became trivial. Compiling the list of all event types that can be generated by GENIE in its current
configuration simply involves looping over the active threads and adding the corresponding InteractionList
objects. Selecting an event type to be generated from that master list involves looping over its Interaction
objects and, for each element, identifying the responsible thread, requesting its corresponding cross
section model and invoking it by passing the Interaction object as argument. Once an event type has
been selecting generating the event simply involves looking up the responsible thread and delegating
responsibility to it.

During event generation an invoked thread maintains a modification history of the event record. If a
tried event generation path leads to a dead-end, the current event generation module throws an exception
and aborts. The event generation thread catches that exception and, depending on information stored
at it, may rerun the event using a snapshot of the event record taken N steps back, in the hopes of
taking an alternative path and avoiding the encountered dead-end. If a configurable maximum number
of exceptions is caught, or if any thrown exception specifies explicitly that generation of the current event
is to be aborted altogether, the thread sets the appropriate error flags and makes sure that the remaining
processing steps are skipped. The user, via options set in the event generation driver, may choose to keep
certain types of these events so as to examine their type and frequency, though the default behavior of
GENIE is to discard these events and only write out physical, fully formed events. Error handling within
each active thread greatly adds to the robustness and fault-tolerance of the package, which is especially
valued in large-scale, CPU-intensive, experiment-specific Monte Carlo production runs involving hundreds
of CPU cores over many weeks.

Advanced users can modify the default event generation threads by removing / adding event generation
modules, or they can define their own uniquely named threads for handling new processes or handling
existing processes in new ways.

4.4.2.3 Event generation drivers

GENIE provides two event generation driver classes. These drivers collect the user inputs, instantiate
and configure all required event generation components, and oversee communications between these
components, the computing environment, and the user.

The two driver classes support two different types of functionality:

• Instances of the GEVGDriver class can handle event generation for a given initial state correspond-
ing to an arbitrary neutrino / target pair.

• Instances of the GMCJDriver class can be used for more complicated simulations involving arbi-
trarily complex, realistic beam flux simulations and detector geometry descriptions. This driver

4.5. OUTPUT EVENT N-TUPLES 83

Figure 4.1: A UML diagram depicting the GENIE event generation framework. See text for details.

object concerns itself mostly with driving the flux and detector geometry navigation drivers and
integrating those with the GENIE event generation framework. It represents a significantly more
complex and CPU-intensive event generation case but relies entirely on a host of GEVGDriver in-
stantiations, one for each possible initial state in that Monte Carlo job, in order to obtain neutrino
interaction physics modeling capabilities and generate event kinematics.

4.5 Output event n-tuples

84 CHAPTER 4. THE GENIE GENERATOR

Chapter 5

The GENIE Comparisons

5.1 Introduction
The GENIE Comparisons is a database that also contains the necessary instructions to generate a GENIE
predition specific for each database.

5.2 Source code, configuration and data file organisation

5.3 The Comparisons software framework

5.3.1 Overview

5.3.1.1 General Plotting App

The most relevant application of the Comparisons is gvld_general_comparisons. It allows automatic
plotting of all the datasets and predictions which are organized according to the GLinearData interface, see
section 5.3.4.2. The application produces two files: a pdf files with all the plots and some χ2 distriubutions
and a ROOT file with the histrograms used to build the plots. The application accepts all the options
to configure the Plexus (section 5.3.2.1) and also support the following:

• ‘-o <file_name>’ that sets the name of the output files, the default begin “comparison.root” and
“comparison.pdf ”. If the option is called, the outputs will be “<file_name>.root” and “<file_name>.pdf ”.

• ‘-t <title>’ sets the title of the PDF document created in by the application. It is useful to keep
truck of some particular information associated with the plots.

• ‘--no-root-output’ that does not create the ROOT file.

5.3.2 The Plexus

The GENIE Comparisons product implements a large collection of experimental datasets. In a run of
a GENIE Comparisons app any subset of these datasets may be compared with GENIE predictions
and, within the context of our tuning procedure, any subset of these datasets may be fit jointy. A
number of predictions may correspond to the same dataset. For example, in the context of validation
and software integration, several predictions may be generated by the same physics model but from
different versions or branches of the GENIE Generator. In the context of model characterization, several

85

86 CHAPTER 5. THE GENIE COMPARISONS

predictions may be constructed from several alternative physics models included in a single version of
the GENIE Generator. In general, for a given dataset, any number of predictions may be constructed
for any combination of GENIE version, comprehensive model configuration, and model parameter sets,
so there is a one-to-many relation between datasets and predictions. GENIE predictions are constructed
from MC production. Generally, a MC production is distributed over several batch jobs and contains
a large number of MC files. So, there also an one-to-many relation between predictions and MC files.
The MC files used for predictions corresponding to different datasets may or may not be the same
(The MC productions used for 2 distinct predictions are the same only if the predictions correspond to
the same version of GENIE and to the same model configuration or tune, and if their corresponding
datasets come from the same experiment or otherwise requires identical MC running options (neutrino
flux and targets). A typical GENIE Comparisons run may include O(100) datasets, O(500) predictions
and O(10,000) MC files and the various kinds of one-to-many associations, represented graphically in
Fig. 5.3.2, need to be constructed dynamically, represented in memory and allow efficient navigation
from datasets to predictions to MC files and vice versa. This is the task of the Plexus, a crucial element
of the GENIE Comparisons infrastructure.

The Plexus provides several methods, but the following few worth a mention:

• some

• method

• or

• other

5.3.2.1 Plexus configuration

The Plexus configuration accepts a number of options in addition to the mandatory ‘--global-config
my_config.xml’. These are passed through the option ‘--opt <my_string>’. In this case the string is
passed to the dataset and at configuration time, each dataset can look for specific option. For readability,
in case of multiple options to be passed to the plexus, it is suggested to separate the different options
with an obvious separator, like column or semi-column. These options can control virtually everything
and no limitations are foreseen at the time being. Be aware that the string is passed to every dataset,
so be careful when creating an options as the same key-word can already be in use. Ideally the usage
of these options should be restricted to usage depentent conditions, otherwise normal control switches
should be put in the xml configuration files, see 5.2. Some notable options are:

• “no-syst” remove additional systematic added on top of the existing data by the GENIE collabora-
tion. Some old integrated cross section datasets have proved to be debatable in their analyses at
least, hence expert of the collaboration decided to add a correlated errors to some datasets. This
option removes this addition. This is useful for tuning purposes so that the a more robust error
treatment can be performed.

• “fittable” changes the definition of degrees of freedom (see section 5.3.4.2) for the Miniboone 1π
dataset. This data release contains a number of 1D and 2D distributions all coming from the same
data sample, but no correlation is reported between the different distributions. For this reason,
some distribution should be easily disabled in case of a fit, as a fit using all the distrubutions is
hard to justify. This option define as valid degrees of freedom only the 2D differential cross sections
as a function of the final state observables.

5.3. THE COMPARISONS SOFTWARE FRAMEWORK 87

Figure 5.1: There is an one-to-many association between a dataset and GENIE predictions as the latter
can be generated with any GENIE version and model configuration or tune. There is also an one-to-
many association between a prediction and the MC event files used for constructing that prediction. The
MC files used for predictions corresponding to different datasets may or may not be the same (The MC
productions used for 2 distinct predictions are the same only if the predictions correspond to the same
version of GENIE and to the same model configuration or tune, and if their corresponding datasets come
from the same experiment or otherwise requires identical MC running options (neutrino flux and targets).
The Plexus maintains all the one-to-many associations in memory and allows the Comparisons framework
to navigate them.

88 CHAPTER 5. THE GENIE COMPARISONS

5.3.3 Naming conventions

The name of a GENIE MC production used for constructing the prediction of the GENIE Comparisons
product is a colon-separated list of:

1. a string that identifies the generator version, e.g “v2.10.2”, or “vtrunk”,

2. a string that identifies the physics model choice , eg “default”, or “G18_02a_01_0025”,

3. a string that identifies the simulated experimental setup, including information on the flux and
targets used, e.g “miniboone_fhc”.

Therefore, a production name is a “version:model:setup” string such as “v3.2.8:tune2017a1:miniboone_fhc”.

Events from an appropriate MC production can be used to construct the GENIE prediction corresponding
to an experimental dataset. The name of a GENIE prediction is a colon-separated list of:

1. the name of the corresponding dataset, e.g. “miniboone_nubarccqe_2013”, and

2. the name of the MC production used for constructing the prediction (which, itself is a colon-
separated list as described above), e.g. “v3.2.8:tune2017a1:miniboone_fhc”.

Therefore the unique name of GENIE prediction is a “dataset:version:model:setup” string such as “mini-
boone_nubarccqe_2013:v3.2.8:tune2017a1:miniboone_fhc”.

Typically, a dataset or a prediction implementation constructs a large collection of data objects corre-
sponding to different components of the correspondng data release. Several data representation formats
may be used for different purposes. For example, for improving the CPU efficiency during a minimization
loop, GENIE arrays may be used to represent predictions, but they may be converted to histograms at
the end of the minimization to enable graphical representation. Details may vary depending on how each
concrete implementation works and on the requirements of the analysis performed with each prediction.
Several other metadata (for example, binning schemes used in data releases) may be produced as well.
Therefore, unique naming scheme for the constructed data objects is also needed. The name of each
object is a colon-separated list of:

1. an optional tag, e.g. “best_fit”, or “toy_mc_231”,

2. the name of the dataset or prediction it belongs to, e.g. “miniboone_nubarccqe_2013”, or “mini-
boone_nubarccqe_2013:v3.2.8:tune2017a1:miniboone_fhc”,

3. a internally unique name that describes the actual quantity being represented by the data object,
e.g. “flux_integrated_dxsec_dQ2”, and

4. a string indicating the format of the output object (the same prediction may be represented in
numerous compatible formats), e.g. “arr1d”, “arr2d”, “th1d”, “th2d” etc.

Functions available within the genie::cmp::nm namespace (see GCNameConv.h) allow users to tokenize
the names and return individual components. Owing to the uniqueness of the dataset and prediction
names and of all distinct data objects they produce, the complete GENIE data archive and an extensive
set of corresponding predictions can all be written ouyt in a single ROOT file.

5.3. THE COMPARISONS SOFTWARE FRAMEWORK 89

5.3.4 Describing datasets
5.3.4.1 The GExDataI interface

Each dataset within GENIE Comparisons implements the GExDataI interface. The interface provides
the following methods:

• virtual const string & Name(void) const
Returns a name that identifies the dataset, following the naming conventions described above. The
name is propagated in output files, data object names etc.

• virtual const Registry & Metadata(void) const
This method provides summary information (metadata) about the dataset.

• virtual bool Read(string file, Option_t * opt = 0) const
Read all information for the implemented dataset from the input file.
Typically, the information needed to implement a dataset is assembled from several files (fluxes,
binning schemes, central values for the measurement of a physical quantity, corresponding covariance
matrices etc) curated by the GENIE Collaboration or made available by an experiment through an
official data release. Additional necessary information (experimental cuts, exposure, corrections)
may be harvested from the corresponding journal papers. Frequently, the file specified in the Read
method is an XML file that contains all the necessary information and includes links to several
other files.
For each dataset implemented within the GENIE Comparisons product, the corresponding XML
file may be found in one of the sub-directories of ’$GENIE_COMPARISONS/data/measurements/’.

• virtual bool Write (
TObjArray* col, const char* tag="model", Option_t* write_opt=0) const

virtual bool Write (
const char* fn, const char* tag="model", Option_t* write_opt=0, Option_t* file_opt=0) const

These above methods enable users to write a selected subset of the contained data objects to the
input container or file. The arguments have the same meaning as in the corresponding methods of
the GPredictionI interface.

5.3.4.2 GLinearDataI extension to the GExDataI interface

The GExDataI interface is very general, but has limited capabilities when it comes to access the data
in a general way, detatched from the way the data relese is build. This linearized version is designed
to allow a more easy access to the stored information. In addition to previous methods, the linearized
access is granted by these methods:

• virtual double BinContent(unsigned int i) const returns the central value of a data point.

• virtual double BinCorrelation(unsigned int i, unsigned int j) const returns the correlation between
two data points.

• virtual double BinCovariance(unsigned int i, unsigned int j) const returns the variance between
two data points.

• virtual double BinError(unsigned int i) const returns the square root of the diaagonal elements of
the variance matrix.

• virtual double BinVariance(unsigned int i) const return the diagonal elements of the variance
matrix.

90 CHAPTER 5. THE GENIE COMPARISONS

• virtual std::string BinName(unsigned int i) const returns that the name of the bin, which is a
human readable string that identifies dataset, observable and the bin.

• virtual std::string BinUnit(unsigned int i) const returns a string that gives the Unit of the bin.

• virtual bool IsDegreeOfFreedom(unsigned int i) const returns a boolean which differentiates between
valid degrees of freedom with respect to eompy points.

• virtual unsigned int Size() const is the size of the vector of the linearized representation of the data.

All of these methods access data information as each of the data point were in a vector of size Size(), first
valid bin is 0. Not all of these methods are supposed to be reimplemented, but all of them are defined
virtual as there might be datasete-specific optimizations.

Note that not every point from 0 to Size() - 1 is a released point of the data released. Data releases
can contain points that cannot be used in an analysis: empty bins, bins with negative cross sections,
etc. These are not deregrees of freedom associated with a measurement and are not supposed to be
used to compute a χ2 square against a prediction. In this contest we need to keep track of valid points
as a covariance matrix with empty bins is not positive definte and hence it can not be inverted. The
IsDegreeOfFreedom(unsigned int i) method is the key method to define is a valid point or not. It is
already implemented for GLinearDataI simply requesting for the variance of the point to be strictly
bigger than zero, but i cannot be specified for each dataset. From the top level (only degrees of freedom)
there is the necessity to go back to the single point within an histogram also containing empty bins. This
is accomplished with an internal mapping system. The maps are actually accessible with the methods
const std::vector<unsigned int> & MapToAll() const - which is the map from degrees of freedom to the
global map - and const std::map<unsigned int, unsigned int> & MapToValid() const which is the inverse
map. Each map contains a number of elements given by unsigned int DegreesOfFreedom() const method.

Finally, there is a set of methods that returns actual vectors of points, and this is done with the
methods:

• virtual TVectorD* LinearizedBins() const

• virtual TClonesArray* LinearizedBinNames() const

• virtual TMatrixDSym* LinearizedCovariance() const

These return ROOT vectors or matrices with size give by Size() whose ownership belongs to the user.
For each of them there is a counterpart which receives as an input in the form returned by MapToAll().
These is supposed to be used to restrict the number of elements according to valid degrees of freedom,
but it can accomodate any restriction the user might want to use. All these methods are defined as virtual
as possible optimizations can be implemented.

5.3.4.3 GMultipleData extension to the GLinearDataI interface

Since the Plexus can contain a number of datasets, it is natural to imagine to chain all these vectors.
In fact, this is the ultimate idea behind GLinearDataI: easily combine different datasets as they are
reduced to simple vectors through the GLinearData interface. The chain is implemented using the
class GMultipleData, which is a vector of GLinearDataI which also inherits from GLinearDataI. All the
methods are re-implemented in order to be consistent to the single dataset in the chain.

A GMultipleData is not build automatically by the Plexus as it is not supoosed to be always possible:
data might not be linearized. For that reasons the default contructor is not allowed to be used and the
only way to build this object is through a vector<GLinearPredictions*>.

5.3. THE COMPARISONS SOFTWARE FRAMEWORK 91

5.3.5 Describing GENIE predictions

5.3.5.1 The GPredictionI interface

Each prediction within GENIE Comparisons implements the GPredictionI interface. The interface pro-
vides the following methods:

• virtual const string & Name(void) const
Returns a name that identifies the prediction, following the naming conventions described above.
The name is propagated in output files, data object names etc.

• virtual const string & MCProdTag(void) const
Returns the name of the MC production used for constructing the prediction. The MC production
tag is a unique combination of the generator versions, the model and tune choices, and the running
options (such as the choice of neutrino flux and target).

• virtual bool CorrespondsTo (const GExDataI * dataset) const
In principle, a run of the Comparisons product includes several datasets and predictions. Numerous
predictions (e.g corresponding to different generator versions, comprehensive models or tunes) may
correspond to the same dataset. This method allows the matching between predictions and datasets.

• virtual const Registry & Metadata(void) const
This method provides summary information (metadata) about the prediction.

• virtual bool Configure(const GExDataI * dataset, const GSimFiles* mc, const int mc_idx)
This method configures the prediction with its corresponding dataset, as well as with the list of
MC event files to be used. All information related to a dataset (such as the binning of observable
distributions, exposure, cuts, flux information) needed to generate a prediction should be obtained
from the input dataset and should not be coded-up within the prediction itself.

• virtual bool ProcessEvent (const EventRecord * event, double wght = 1.0, Option_t * opt = 0)
GENIE prediction are calculated from pre-generated event samples produced with the desired GE-
NIE version and model configuration, and with the appropriate running options (neutrino flux,
target). To improve the efficiency of the concurrent construction of multiple preductions, the event
loop is handled by the Comparisons package infrastructure as explained earlier in this chapter: An
event loop driver performs a single iteration over all events of all input MC productions, and feeds
events to predictions as needed, based on the specific combination of GENIE version, model con-
figuration and running conditions specified by each prediction. This function allows the prediction
to processes a single event handed over by the event loop driver.

• virtual void Reset(void)
Method used at the beginning of the event loop to reset internal data structures.

• virtual void Finalize(void)
Method used at the end of the event loop to finalize the construction of a GENIE prediction (e.g.
apply overall normalization factors etc).

• virtual bool Write (
TObjArray* col, const char* tag="model", Option_t* write_opt=0) const

virtual bool Write (
const char* fn, const char* tag="model", Option_t* write_opt=0, Option_t* file_opt=0) const

These above methods enable users to write a selected subset of the contained data objects (specified
by the write_opt argument) to the TObjArray container specified by the col argument or to the

92 CHAPTER 5. THE GENIE COMPARISONS

ROOT file pointed to by the input fn argument. The acceptable options for the write_opt depend
on the specifics of the actual prediction but, typically an unset argument will result only to GENIE
arrays being written out, while an “all” option will result to all objects (including their conversion
to ROOT equivalents) being written out. The file_opt argument can be used to write out a
number of results into the same by successive calls to the Write(...) method file (by calling it with
file_opt="recreate" in the first instance and with file_opt="update" subsequently). If null, the
default value of file_opt is "recreate". The tag argument is the optional tag used in the data object
naming convention outlined in the previous section.

• virtual double ExtremisedFunction(const GExDataI*, Option_t* opt="likelihood_ratio")
This method calculates a test-statistic and provides a hook for model fitting.

5.3.5.2 GLinearPredictionI extension to the GPredictionI interface

As for the GExDataI, also GPredictionI has an extention in order to provide a uniform access, and that
is GLinearPredictionI. For predictions, the list of methods which implement a linearized access is:

• virtual double BinContent(unsigned int i) const

• virtual double BinError(unsigned int i) const

• virtual std::string BinName(unsigned int i) const

• virtual std::string BinUnit(unsigned int i) const

• virtual unsigned int Size() const

They all behave like their data counterpart and have to be implemented in a non-abstract class. Note
the lack of methods related to a covariance matrix. This is because a prediction in this context is a
basic object designed to describe the expectation value of a GENIE configuration in a given point of
its parameter space. The error in this case is supposed to be the statistical error associated with a bin
because of the MC used to build the prediction. The Size() of a LinearPreditionI is supposed to be same
of its data counterpart. In addition LinearPredictionI allows the setter methods:

• virtual double SetBinContent(unsigned int i, double c)

• virtual double SetBinError(unsigned int i, double e)

The class has already implemented the creation of ROOT-like global objects through the methods

• virtual TVectorD* LinearizedBins() const

• virtual TClonesArray* LinearizedBinNames() const

• virtual TVectorD* LinearizedMCErrors() const

As in their the data counterpart, there are the versions of there methods accepting an incoming Map-
ToAll() style restriction to a specific set of bins. Not that at the prediction level there is no possibility
to define degrees of freedom, hence the lack of method IsDegreeOfFreedom(unsigned int i) to be imple-
mented: only the data can define valid degrees of freedom.

Finally, the method that is specific for prediction is virtual double ChiSquare(const GLinearDataI*
data, std::map<std::string, double> * const chi = nullptr) const. This method evaluates the chi-square
between the prediction and the dataset, using all the degrees of freedom defined by the dataset and the
covariance matrix provided by the data. Note that with respect to GPredictionI there is a change in the
paradigm: not all the possible test-statistics are possible. The information has to be reduced to central

5.3. THE COMPARISONS SOFTWARE FRAMEWORK 93

values and a covariance matrix so anything that is not a gaussian approximation cannot be fitted in this
description. Hence the only meaningful test-statistic is a chi2. If a map pointer is passed to the function,
the value of the chi-square is stored in the map with the Name() of the dataset.

5.3.5.3 GMultiplePrediction extension to the GLinearPredictionI interface

As for data, there is already the possibility to combined together a number of GLinearPredictionI in
a unique vector. The class is not build automatically by the plexus and can be build only once a
corresponding dataset is created.

5.3.6 Data representation model

The interface described in 5.3.4 and 5.3.5 allows one a) to organise a hierarchy of datasets and GENIE
predictions at a high level, b) to access experimental observables and the corresponding predictions (at
the level of single experimental data points) in a simple and uniform way that is independent of the type
and dimensionality of the experimental observables, and c) to perform model fits. However, this interface
does not provide sufficient functionallity for use cases where a higher level organisation of data points is
required such as, for example, for plotting. In order to solve this problem a new Data Representation
Model (DRM) package was developed. A general scheme of DRM classes can be seen in figure 5.2. The
package consists of a furhter specification class for the linear interfaces (the Maps) and a set of low level
objects called Storages. In addition, DRM contains a number utility classes which makes the whole
system more organized.

The fundamental concept of the DRM is the Storage. As most things related to data description in
this framework, the storages come in pairs: GDataStorage and GPredictionStorage. Both storages are
abstract classes and need to be specified in actual types that are already available in the DRM package,
yet the purpose of this paragraph is to define whether a block of data points should be implemented as a
single Storage. The desciption of all the possible storages is posponed to 5.3.6.4. The best definition of a
storage is a set of points that share the same “plot” or that should be plotted together. The details of the
plotting depends on the specific derived class. Valid examples (already implemented) are GDataHist1D,
GDataHist2D. A GPredictionStorage is not supposed to be created without it’s data counterpart and it
will contain a pointer to the data storage used in its creation. In this way the binning is assured to be
safe and always matching the original GDataStorage.

Each storage type is supposed to organize the data in a convenient and logic way, but it is also
supposed to provide the linearized acces to be used at high level via the method double BinContent(
unsigned int i) const. As the linearized access is avaiable already at this level, it is the GDataStorage
that owns the information of the covariance of each Storage. Each GDataStorage can contain a number of
covariance matrices that are summed together to obtain the proper total covariance matrix of the Storage.
The linearization allows the matching between the error and it’s central value whatever is the shape of
the plot and it’s managed once and for all at the level of the storage. The covariance management is the
reason why we are not using ROOT native classes to store the points as they can only store variances
for each point but not a full covariance matrix. Anyway, each Storage is expected to be able to return a
ROOT drawable object via the method TNamed* BuildDrawable() const.

5.3.6.1 GErrors

GErrors is a class designed to store the generic information reguarding the gaussian errors of a number
of points. It is essencially a ROOT TSymMatrix but it can store also correlations or simple uncorrelated
erorrs without allocating useless memory. It also has some common operations defined like sum and
multiplication. This class is used everywhere in the DRM whenever the variance information is necessary.

94 CHAPTER 5. THE GENIE COMPARISONS

GErrors
+errors: GArray1D
+corr: ROOT::TMatrixDSym

GDataStorage
Model for Data

single plots

#errors: map<string, GHistError>
#TotalError: GDataError

+Get(i:int): double const
Linearized
access

+GetName(i:int): TString const
+Size() const

GExDataI 1**1

GPredictionI 1**1

GDataMap
Autamatic

implementation
of LinearDataI

#hists: map<string, GDataStorage*>

GPredictionMap
Automatic

implementation
of

LinearPredictionI

#hists: map<string, GPredictionStorage*>

GPredictionStorage
+errors: GHistErrors

+Get(i:int): double const

MultipleData
#fVect: vector<GLinearDataI*>
#fCovariances: map<pair<unsigned int, unsigned int>, TMatrixD*> >

+BinContent(unsigned int): double const
+IsDegreeOfFreedom(unsigned int): bool const

MultiplePrediction

GLinearDataI
Professor

Interface for
Data

+BinContent(unsigned int): double const
+BinCovariance(i,j): double const
+BinName(unsigned int): string const
+IsDegreeOfFreedom(unsigned int): bool const
+Size() const
+LinearizedBins(): TVectroD* const
+LinearizedCovariance(): TMatrixDSym* const
+LinearizedBinNames(): TClonesArray* const
+IsCorrelatedTo(in GExData *): bool const
+ExCovariance(const GLinearDataI *): TMatrix* const
+DegreesOfFreedom(map<string, unsigned int> *=0) const

GLinearPredictionI
Professor

Interface for
Prediction

+BinContent(unsigned int): double const
+BinError(unsigned int): double const
+BinName(unsigned int): string const
+Size() const
+LinearizedBins(): TVectroD* const
+LinearizedMCErrors(): TVectorD* const
+LinearizedBinNames(): TClonesArray* const
+ChiSquare(map<string, double> *=0) const

1**

1

1

1

ExCovarianceReader
#fMatrix: TMatrixD *
#fFirst_dataset: string
#fSecond_dataset: string

+constructor()
+constructor(xml_file)
+Matrix(transverse=false): TMatrixD const
+Read(xml_file)
+Configured(): bool const

Utils

Figure 5.2: Class diagrams of the DRM, see 5.3.6.

5.3. THE COMPARISONS SOFTWARE FRAMEWORK 95

The main advantage in using GErrors is the possibility of extract “restrictions” of the matrix. When-
ever we deal with covariance matrices it is possible to face null determinant matrices, e.g. because of a
single empty bin (null errror) in a huge 2D histogram. In this case it is difficult to use the matrix to
evaluate a χ2 as the matrix is not invertible. In the Linearized framework this implies that not all the
points associated to the covariance matrix are valid degrees of freedom and the MapToAll() method is
designed to return this information based on the dataset. In this contest a valid GErrors object can be
retrieved simply calling for GErrors::Restriction(MapToAll()).

5.3.6.2 GDataMap and GPredictionMap

The maps are the implementations of the Linearized Interfaces to host a number of Storages. It is worth
pointing out that using a combination of Map and Storge gives the automatic linearization required by
the linearized interfaces without writing new lines of code.

As the name suggests, the maps are std::map<string, Storage>. As the order of the objects mat-
ters when it comes to linearize the acces to all the points, the keys must be the same between a
DataMap and its corresponding prediction. If you want to be sure, use the method GPrediction-
Map::InitPredictionStorages() ;

5.3.6.3 Degrees of freedom mapping in storages

The concept of degrees of freedom is defined at the level of the GDataMap but it might be usefull also
at a lower lever if we are interested to evaluate the χ2 of a single plot instead of the whole dataset.
For this reason, the definition of degree of freedom can be imposed to the lower level using the method
GDataStorage::DefineValidMap(). There are two versions of this method, both of them requires the
information contained in the GLinearizedDataI::MapToValid(). The difference between the two methods
is that one assumes the GDataStorage is mapped in a continuous block of points in the GLinearizedDataI,
while the second allows a definition of a map in case the bins are not in sequence.

5.3.6.4 Data and Prediction Storages and their automatic plots

There are number of Storages already implemented, each one with different specifics, properties and
interpretations. For each Storage type, there is an automatic plotting framework, coded in ‘$GENIE
_COMPARISONS/src/Common/GCStyle.cxx’. Here is a list of all the available storages and a general
description.

GDataHist1D represents data that are coming from a 1D histogram. It’s prediction counterpart,
GPredictionHist1D, has the fill methods and behaves like a ROOT histogram. Their corresponding
drawable object is a ROOT TH1D. It’s standard plot consists of the data TH1D superimposed to
all the TH1D coming from the

GDataHist2D is our internal 2D histogram and so is GPredictionHist2D. Both objects have the caba-
bilities to instantiate slices alog X and Y direction. They also provide the mapping between the 2D
and the Linearized access via the methods BinIndex(i, j), BinXIndex(id) and BinYIndex(id).
The standard plotting is more complicated. First, the data 2D histogram is plotted followed by all
the 2D histograms from each prediction assicated with the data. Then, for each predictions, there
are 2D plots showing the differences between the prediction and the data. Three plots are available:
aboslute difference, difference relative to the data and difference divided by the bin error. The last
set of plots consists of all the X and Y slices plotted as 1D histograms with data superimposed to
the predictions.

96 CHAPTER 5. THE GENIE COMPARISONS

GPredictionStorage
+errors: GHistErrors

+Get(i:int): double const

GDataStorage
+errors: map<string, GHistError>
+TotalError: GDataError
+name: string

+Get(i:int): double const
Linearized
access

+GetName(i:int): TString const
+Size() const

GMondrianBin
+x_min: double
+x_max: double
+y_min: double
+y_max: double
+regular_bins: set<unsigned int>

GMondrianBinning
+bins: vector<GMondrianBin>
-x_regular_binning: GArray1D
-y_regular_binning: GArray1D
-regular_to_bin: vector<unsigned int>

+OptimizeMap(): bool
+InsertBin(x_min,x_max,y_min,y_max): unsigned int
+GetBin(reg_bin:unsigned int): unsigned int
+GetRegularBin(x,y): unisgned int

GDataMondrian
+bins: GMondrianBinning
+val: GArray1D

+InitPrediction(): GPredictionHist*

GPredictionMondrian
+data: GDataHist*
+val: GArray1D
+errors: GHistErrors
used for
plotting

+constructor(in data:GDataHist*)
+Fill(): bool
+Scale(factor:double)
+ChiSquare()
+Write()

1**

1

1

1

1

1

Figure 5.3: Class diagrams for Mondrian hisogram inner structure.

GDataMondrianBin and GPredictionMondrianBin provides support for 2D histograms where the bins
grid is not regular as in a normal 2D hist, thus looking like a Mondrian’s painting. The binning
class structure is visible in Figure5.3. Essencially, all the GMondrianBin are part of a binning
system that creates the regular grid and each “regular bin” is then mapped to the irregualar ones.
The regular grid is also used in the fill methods of the prediction, making it almost as fast as a
standard 2D hist as it’s not looping over all the bins. The drawable object is a TH2D made of the
regular grid. The default plotting is similar to the 2D plotting for what concerns the 2D plots, the
difference lies in the slices: because of the irregularities there might not be valid slices in certain
bins or in one of the two directions. So, wehnever a slice can be made, the slice will be plotted.
In addition all the bins are plotted in sequence according their number: note that contiguous bins
might correspond to bin far from each other in the 2D plot.

GDataGraph is a special case of a 1D representation in which the data are represented as points,
but the predictions are lines rather than bins. In both cases, the underlying types are ROOT
TGraphAsymmErrors, but the interpretation is very different between data and predictions. The
data are interpreted as usual, but the behavior of GPredictionGraph::BinContent(int) is not trivial:
whenver a call is done, the returned value is the average of all the points in the TGraph in the
range provided by the X error bars of the data. If no points from the predictions are in that range
- or if there is no range - the TGpraph::Eval(double) will be called and it is evaluated at the x
associated with the data point.

5.3.6.5 ExCovarianceReader

The whole structure provided by the GPlex is based on data releases. Generally there is one entry
in the GPlex for every data release. Note that is a very strict rule as there are very few exceptions
and they are all contained in the Integrated Cross Section part of the Comparisons framework. Yet,
analyses are always ongoing and it can happen that correlations between datasets are published later.
These correltions can belong to very different conditions hence it’s not always easy to include then in
a single class inheriting from GExDataI. Also, in general, the correlated plots can make sense on their

5.4. IMPLEMENTED DATA/MC COMPARISONS 97

own without their correlated counterparts and in this contest a whole covariance matrix is not really
necessary. For this reason, it is possible to store covariance in a ExCovarianceReader which is common
for all the datasets and relies on the mininal requirements of the GLinearDataI. In order to have this
working in the code one just need to implement the function IsCorrelatedTo(const GExDataI * data)
in the proper specification classes and implement the proper ExCovarianceReader.

5.4 Implemented data/MC comparisons

5.5 Caveats and opportunities for improvement
double for errors are too much, let’s make them float.

The plotting code should be moved somehow at the level of the DRM rather than in the style: the
code is starting to get a bit too big.

98 CHAPTER 5. THE GENIE COMPARISONS

Chapter 6

The GENIE Tuning

6.1 Introduction
Genie collaboration has developed as systematic tuning system that is based on an external numerical
assistant called Professor [111]. The main idea is to use brute force to scan a number of points in the
parameter space. Then, each observable behaviour is parametrized with a polynomial of a certain order
of the parameter space variables. Finally, these parameterizations are used in the fit minimization process
instead of the actual values of the prediction in a given point of the parameter space.

The details of this procedure is presented in chapter 16. This section is just reporting the (small)
amount of code necessary to perform this operation within GENIE. The code is living in two different
repositories. The first is the GENIE Tuning product which is living in the stardard genie repository. The
other is a separated git repository mantained by members of the GENIE collaboration and PROFESSOR
collaboration.

6.2 The GENIE / Professor interface
This interfaces is almost automatic once data and prediction respect the GLinearData API, which is the
only necessary condition.

On top of that, the only necessary thing is to store the information in the appropriate format so that
it can be used by the Professor Suite. This is done with the app gvld_professor_output which is living in
GENIE Comparisons. The application has some optioinal flags that control the output format. This apps
share the same Plexus controlling flags of gvld_general_comparisons, see sections 5.3.1.1 and 5.3.2.1. In
addition it also supports:

• ‘–o’ sets the name of the prediction output. The default is ‘prediction.root ’. It is not necessary to
add the ‘.root ’ extension.

• ‘--data-output <file-name>’ enables the data output which is not enabled by default. This
consists of two different files: ‘<file-name>.root ’ and ‘<file-name>.weight ’. The first is the data
information organized in the same way as in the prediction file. The second is dummy weight file
that should help the analyzer to set weights or nuisance parameters more easily.

6.2.1 xml configuration templates
Even though the professor formatting app is living in GENIE Comparisons, the Tuning repository is still
holding an important key passage. As all the Comparisons products, gvld_professor_output requires a set

99

100 CHAPTER 6. THE GENIE TUNING

of xml configuration files in order to work, see section 5.2. The tuning repository contain the templates and
a perl macro to create such xml files automatically in ‘$GENIE_TUNING /src/Professor/scripts/GlobalComparison’.

6.3 The Professor tuning tool
The Professor tuning tool consiste of some PYTHON scripts than requires a professor installation, see
http://professor.hepforge.org to obtain the code and the installation instruction. Note that a Docker ver-
sion is mantained by the Professor authors. In order to have access to the GENIE-PROFESSOR specific
repository, create an account on gitlab.dur.scotgrid.ac.uk and write to Marco Roda (mroda@liverpool.ac.uk)
to ask for access to the repository.

6.4 Tune History
Having a tuning campaing - see chapter 3 - requires to keep track of the details of each tune. This
is done in ‘$GENIE_TUNING /tune_history ’. This directory substructure is organized as ‘$GENIE /config ’
and it keeps inputs and outputs of the professor tuning procedure. See chapter 16 for details about the
procedure and how to interpret those files.

Part III

Using the GENIE Generator in
Neutrino Mode

101

Chapter 7

Generating Neutrino Event Samples

7.1 Introduction
[to be added in future revision]

7.2 Preparing event generation inputs: Cross-section splines
When generating neutrino interaction events, most CPU-cycles are spent on calculating neutrino inter-
action cross sections. In order to select an interaction channel for a neutrino scattered off a target at a
particular energy, the differential cross section for each possible channel is integrated over the kinematic
phase space available at this energy. With ∼ 102 possible interaction modes per initial state and with
∼ 105 differential cross section evaluations per cross section integration then ∼ 107 differential cross
section evaluations are required just in order to select an interaction channel for a given initial state. Had
you been simulating events in a realistic detector geometry (∼ 102 different isotopes) then the number
of differential cross section evaluations, before even starting simulating the event kinematics, would rise
to ∼ 109. It is therefore advantageous to pre-calculate the cross section data. The event generation
drivers can be instructed to to load the pre-computed data and estimate the cross section by numerical
interpolation, rather than by performing numerous CPU-intensive differential cross section integrations.
The cross section data are written out in XML format and, when loaded into GENIE, they are used for
instantiating Spline objects.

7.2.1 The XML cross section splines file format
The XML file format is particularly wekk-suited for moving data between different GENIE applications.
This is the only intended usage of these files. If you wish to use GENIE’s cross section splines in another
context, eg. within your analysis code, then we recommend converting them from XML to ROOT format
using utilities provided by GENIE (See Section 7.2.5). Although you should never have to read the XML
cross section file, it is generally usefull that you do have an understanding of how it is structured so as
to be able to diagnose problems.

All XML splines are stored within ‘<genie_xsec_spline_list>’ tags:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- generated by genie::XSecSplineList::SaveSplineList() -->
<genie_xsec_spline_list version="2.00" uselog="1">

103

104 CHAPTER 7. GENERATING NEUTRINO EVENT SAMPLES

...

...
</genie_xsec_spline_list>

The ‘uselog=”1” ’ flag indicates that the spline knots are spaced ‘logarithmically’ in energy (This is the
default GENIE option so that there is higher knot density where the cross section changes more rapidly).
The data for each spline are stored within ‘<spline>’ tags1:

<spline
name = "{algorithm/reaction; string}"
nknots = "{number of knots; int}">

<knot>
<E> {energy; double} </E>
<xsec> {cross section; double} </xsec>

</knot>
<knot>
<E> {energy; double} </E>
<xsec> {cross section; double} </xsec>

</knot>
... ...
</spline>

Each spline is named by combining the names of the cross section algorithm and its configuration with a
string interaction code. These rather long names are built automatically by GENIE and used for retrieving
the correct spline2 from the spline pool. For example, a spline named ‘genie::DISPartonModelPXSec/CC-
Default/nu:-12;tgt:1000260560;N:2112;q:-1(s);proc:Weak[CC],DIS ’ indicates that it was computed using the
cross section algorithm ‘genie::DISPartonModelPXSec’ run in the ‘CC-Default ’ configuration for an in-
teraction channel with the following string code: ‘nu:-12;tgt:1000260560;N:2112;q:-1(s);proc:Weak[CC],DIS ’
(indicating a DIS CC νµFe

56 scattering process of a sea d̄ quark in a bound neutron). The spline knots
are listed in increasing energy, going up to a maximum value specified during the spline construction.
One of the knots falls exactly on the energy threshold for the given process so as to improve the accuracy
of numerical interpolation around threshold. The energy and cross section values are given in the natural
system of units (~ = c = 1) used internally within GENIE (Note that the more widespread cross section
units, 10−38cm2, are used when the cross section data are exported to a ROOT format for inclusion in
user analysis code. See Section7.2.5).

7.2.2 Downloading pre-computed cross section splines
Cross section spline XML files are kept in: http: // www. hepforge. org/ archive/ genie/ data/

You need to select the file corresponding to the version of GENIE you are using.

Typically I post cross section spline files for all modeled processes for νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ scattered
off free-nucleons (p, n) and off a large set of nuclear targets (the ∼ 40 isotopes that can be found in the
T2K detector geometries3). Using the posted free-nucleon cross section data is easy / fast to calculate

1In the description below, the curly braces within tags are to be ‘viewed’ as a single value of the specified type with the
specified semantics.

2GENIE takes the safest route and checks both the ‘reaction mode’ and ‘cross section algorithm’. It will not use cross
section spline data calculated by a cross section algorithm A, if an alternative cross section algorithm B is currently in use.

3N14, N15, O16, O17, O18, Al27, C12, C13, H2, Cl35, Cl37, Pb204, Pb206, Pb207, Pb208, Cu63, Cu65, Zn64, Zn66,
Zn67, Zn68, Zn70, Ar36, Ar38, Ar40, Si28, Si29, Si30, B10, B11, Na23, F e54, F e56, F e57, F e58, Co59.

http://www.hepforge.org/archive/genie/data/

7.2. PREPARING EVENT GENERATION INPUTS: CROSS-SECTION SPLINES 105

cross section splines for any set of nuclear targets.

Any reasonable request for providing additional cross section splines will be satisfied.

7.2.3 Generating cross section splines
Cross section spline calculation is very CPU-intensive. It is recommended that, for the default GENIE
configuration, you use the officially distributed files. However, the information provided in this section
will allow you to generate your own cross section spline files, should you need to.

7.2.3.1 The gmkspl spline generation utility

Name

gmkspl – A GENIE utility for generating the cross section splines for a specified set of modeled processes
for a specified list of initial states. The cross section splines are written out in an XML file in the format
expected by all other GENIE programs.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/gMakeSplines.cxx ’.

Synopsis

$ gmkspl -p neutrino_code <-t target_codes, -f geometry> [-n nknots] [-e max_energy]
[<--output-cross-sections | -o> xml_file] [--input-cross-sections xml_file]
[--seed rnd_seed_num] [--event-generator-list list_name] [--message-thresholds xml_file]

where [] marks optional arguments, and <> marks a list of arguments out of which only one can be
selected at any given time.

Description

The following options are available:

-p Specifies the neutrino PDG codes.

Multiple neutrino codes can be specified as a comma separated list.

-t Specifies the target PDG codes.

Multiple target PDG codes can be specified as a comma separated list. The PDG2006 conventions
is used (10LZZZAAAI). So, for example, O16 code = 1000080160, Fe56 code = 1000260560. For more
details see Appendix D.

-f Specifies a ROOT file containing a ROOT/GEANT detector geometry description.

-n Specifies the number of knots per spline.

By default GENIE is using 15 knots per decade of the spline energy range and at least 30 knots overall.

106 CHAPTER 7. GENERATING NEUTRINO EVENT SAMPLES

-e Specifies the maximum neutrino energy in the range of each spline.

By default the maximum energy is set to be the declared upper end of the validity range of the event
generation thread responsible for generating the cross section spline.

–output-cross-sections, -o Specifies the name (incl. full path) of an output cross-section XML file.

By default GENIE writes-out the calculated cross section splines in an XML file named ‘xsec_splines.xml ’
created at the current directory.

–input-cross-sections Specifies the name (incl. full path) of the output XML file.

An input cross-section file could be specified when it is possible to recycle previous calculations. It is,
sometimes, possible to recycle cross-section calculations for scattering off free nucleons when calculating
nuclear cross-sections.

–seed Specifies the random number seed for the current job.

This setting will only ne relevant if MC intergation methods are employed for cross-section calculation.

–event-generator-list List of event generators to load.

The list of event generators to load affects the list of processes that can be simulated and, for
which, cross-section calculations need to be calculated by this application. By default, GENIE is
loading a list of of tuned and fully-validated generators which allow comprehensive neutrino inter-
action modelling the medium-energy range. Valid settings are the XML block names appearing in
$GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read Sec. 7.4 explaining why,
almost invariantly, for physics studies you should be using a comprehensive collection of event generators.

–message-thresholds Specifies the GENIE verbosity level.

The verbosity level is controlled with an XML file allowing users to customize the threshold of each
message stream. See ‘$GENIE/config/Messenger.xml ’ for the XML schema. The ‘Messenger.xml’ file con-
tains the default thresholds used by GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’
files define, correspondingly, less and more verbose configurations.

Examples

1. To calculate cross-sections for νµ (PDG code: 14) and ν̄µ (PDG code: -14) scattering off Fe56

(PDG code: 1000260560), and build splines with 150 knots in the energy range up to 20 GeV, type

$ gmkspl -p 14,-14 -t 1000260560 -n 150 -e 20

The cross section splines will be saved in an output XML file named ‘xsec_splines.xml ’ (default
name).

2. To calculate the CCQE cross-section for νµ (PDG code: 14) and ν̄µ (PDG code: -14) scattering off
all the targets in the input ROOT geometry file ‘/data/mygeometry.root ’ and write out the splines
in a file named ‘mysplines.xml ’, type

7.2. PREPARING EVENT GENERATION INPUTS: CROSS-SECTION SPLINES 107

$ gmkspl -p 14,-14 -f /data/mygeometry.root -o mysplines.xml --event-generator-list CCQE

Generating cross-section splines is a CPU-intensive task as a large number of processes (see Fig. 7.1)
and numerical integration of steeply peaked differential cross-sections over extended, multi-dimensional
kinematical phase spaces. When cross-section calculations are needed for multiple targets, it is often
impractical to generate all splines in a single job. The task is typically split into smaller jobs which can
be run on parallel in a batch farm. Batch submission scripts used by GENIE developers can be found in
‘$GENIE/src/scripts/production/batch/ ’ and easily adapted to match user needs. Detailed documentation
is available within the scripts. The multiple XML outputs of all the gmkspl jobs can be merged into
a single XML file using GENIE’s gspladd utility. (See Section 7.2.3.2.) It is worth highlighting that,
for faster results, it is preferable if one organizes the jobs as ‘single neutrino + multiple nuclear targets’
rather than ‘multiple neutrinos + single nuclear target’: In the former case intermediate, CPU-intensive
free-nucleon cross-section calculations, for the given neutrino species, will be recycled in the nuclear
target cross-section calculations. For even faster results one can calculate the free-nucleon cross-section
splines first, then feed the output into a nuclear cross-section spline calculation. Because of the way
nuclear effects are currently handled, nuclear cross-section calculations can recycle CPU-intensive free-
nucleon calculations resulting in a dramatic speed improvement. To feed-in free-nucleon cross-sections
in a nuclear cross-section calculation job, use the gmkspl –input-cross-sections option. Note that, if
you feed-in cross-sections, the calculated cross-sections can not extend higher in energy than the input
cross-sections.

7.2.3.2 The gspladd spline merging utility

Name

gspladd – A GENIE utility for merging many separate XML cross section files into a single XML file.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/gSplineAdd.cxx ’.

Synopsis

$ gspladd -f file_list -d directory_list -o output_file

Description

The following options are available:

-f Specifies input XML files. Multiple input files can be specified as a comma separated list.

-d Specifies input directories. Multiple input files can be specified as a comma separated list. All
XML files found in each directory will be included.

-o Specifies the name of the output XML file.

108 CHAPTER 7. GENERATING NEUTRINO EVENT SAMPLES

Figure 7.1: Cross section splines just for νµFe56 processes modeled in GENIE. The large number of splines
and the fine numerical integration stepping makes spline calculation a very CPU-intensive process.

7.2. PREPARING EVENT GENERATION INPUTS: CROSS-SECTION SPLINES 109

Notes

• At least 2 XML files must be specified as inputs for the gspladd application to work.

Examples

1. To merge ‘/data/iron/xsec.xml ’ and ‘/data/oxygen/xsec.xml ’ into ‘./xsec_all.xml ’, type:

$ gspladd -f /data/iron/xsec.xml,/data/oxygen/xsec.xml -o xsec_all.xml

2. To merge ‘./xsec_Fe56.xml ’ and all the cross section spline files found in ‘/scratch/job1 ’ and
‘/scratch/job2 ’ into ‘./xsec_all.xml ’, type

$ gspladd -f xsec_Fe56.xml -d /scratch/job1/,/scratch/job2 -o xsec_all.xml

7.2.4 Re-using splines for modified GENIE configurations

You should never be doing that (unless you are absolutely sure about what you are doing). The safest
assumption is that changes in GENIE, either a change of default model parameter or a change of a
default model, invalidates previously generated cross section splines as the cross section models (used for
generating these splines) may be affected.

7.2.5 Using cross section splines in your analysis program

As seen before, GENIE’s gmkspl utility writes-out cross section values in XML format. While this format
is particularly well-suited for moving data between GENIE components, it is not the most usefull format
from the perspective of a user who wishes to read and interpolate these cross section data in different
contexts within his/her analysis code.

GENIE provides the gspl2root utility to convert XML cross section splines into a ROOT formats.
The XML cross section data for each process and initial state are converted into a single ROOT TGraph
objects. All ROOT TGraph objects corresponding to the same initial state are written-out in the same
ROOT TDirectory which is named after the given initial state. Multiple TDirectory objects can be
saved in a single output ROOT file. ROOT TGraph objects support numerical interpolation via the
‘TGraph::Eval(double)’ method, so, essentially, one can write-out all GENIE cross section ‘func-
tions’ one needs into a single ROOT file. More details on this particularly useful feature are given
next.

7.2.5.1 The gspl2root spline file conversion utility

Name

gspl2root - A GENIE utility to convert XML cross section files into a ROOT format.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/gSplineXnml2Root.cxx ’.

110 CHAPTER 7. GENERATING NEUTRINO EVENT SAMPLES

Synopsis

$ gspl2root
-f input_xml_file
-p neutrino_pdg_code -t target_pdg_code
[-e maximum_energy] [-o output_root_file] [-w]

where [] denotes an optional argument.

Description

The following options are available:

-f Specifies the input XML cross section spline file.

-p Specifies the neutrino PDG code.

-t Specifies the target PDG code (format: 10LZZZAAAI).

-e Specifies the maximum energy for the generated graphs.

-o Specifies the output ROOT file name.

-w Instructs gspl2root to write-out plots in a postscipt file.

Notes

• The spline data written-out have the energies given in GeV and the cross sections given in in
10−38cm2.

Examples

1. In order to extract all νµ+n, νµ+p and νµ+O16 cross section splines from the input XML file ‘mys-
plines.xml ’, convert splines into a ROOT format and save them into a single ROOT file ‘xsec.root ’,
type:

$ gspl2root -f mysplines.xml -p 14 -t 1000000010 -o xsec.root
$ gspl2root -f mysplines.xml -p 14 -t 1000010010 -o xsec.root
$ gspl2root -f mysplines.xml -p 14 -t 1000080160 -o xsec.root

A large number of graphs (one per simulated process and appropriate totals) will be generated
in each case. Each set of plots is saved into its own ROOT TDirectory named after the specified
initial state.

The stored graphs can be used for cross section interpolation. For instance, the ‘xsec.root ’ file
generated in this example will contain a ‘nu_mu_O16’ TDirectory (generated by the last com-
mand) which will include cross section graphs for all νµ+O16 processes. To extract the νµ+O16

DIS CC cross section graph for hit u valence quarks in a bound proton and evaluate the cross
section at energy E, type:

7.3. SIMPLE EVENT GENERATION CASES 111

root[0] TFile file(“xsec.root”,”read”);
root[1] TDirectory * dir = (TDirectory*) file->Get("nu_mu_O16");
root[2] TGraph * graph = (TGraph*) dir->Get("dis_cc_p_uval");
root[3] cout << graph->Eval(E) << endl;

7.3 Simple event generation cases
This section will introduce gevgen, a generic GENIE event generation application. This particular appli-
cation has access to the full suite of GENIE physics models but will only handle relatively simple flux and
geometry setups. It doesn’t use any of the atmospheric, JPARC, NuMI or other specialized flux drivers
included in GENIE and doesn’t use ROOT/Geant-4 based detector geometries. A reader interested in
the more specialized event generation applications included in GENIE can jump to Chapter 8.

7.3.1 The gevgen generic event generation application

Name

gevgen - A generic GENIE event generation application for simple event generation cases. The application
handles event generation for neutrinos scattered off a given target (or ‘target mix’). It doesn’t support
event generation over ROOT/Geant4-based detector geometries. It handles mono-energetic flux neutrinos
or neutrino fluxes described in simple terms (either via a functional form, a vector file or a ROOT TH1D
histogram).

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/gEvGen.cxx ’.

Synopsis

$ gevgen [-h] [-r run#] -n nev -p neutrino_pdg -t target_pdg -e energy [-f flux]
[-w] [-seed random_number_seed] [--cross-section xml_file] [--event-generator-list list_name]
[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]
[--mc-job-status-refresh-rate rate] [--cache-file root_file]

where [] denotes an optional argument.

Description

The following options are available:

• -h Prints-out help on gevgen syntax and exits.

• -r Specifies the MC run number.

• -n Specifies the number of events to generate.

• p Specifies the neutrino PDG code.

• -t Specifies the target PDG code(s).

The PDG2006 convention is used (10LZZZAAAI). So, for example, O16 code = 1000080160, Fe56

code = 1000260560. For more details see Appendix D.

112 CHAPTER 7. GENERATING NEUTRINO EVENT SAMPLES

Multiple targets (a ‘target mix’) can be specified as a comma-separated list of PDG codes, each
followed by its corresponding weight fraction in brackets as in:
‘code1[fraction1],code2[fraction2],...’.
For example, to use a target mix of 95% O16 and 5% H type:
‘-t 1000080160[0.95],1000010010[0.05]’.

• -e Specifies the neutrino energy or energy range.

For example, specifying ‘-e 1.5’ will instruct gevgen to generate events at 1.5 GeV.

If what follows ‘-e’ is a comma separated pair of values then gevgen will interpret that as an
‘energy range’. For example, specifying ‘-e 0.5,2.3’ will be interpreted as the [0.5 GeV, 2.3 GeV]
range. If an energy range is specified then gevgen expects the ‘-f’ option to be set as well so as to
describe the energy spectrum of flux neutrinos over that range (see below).

• -f Specifies the neutrino flux spectrum.

This generic event generation driver allows to specify the flux in any one of three simple ways:

– As a ‘function’.
For example, in order to specify a flux that has the x2 + 4e−x functional form, type:
‘-f ‘x*x+4*exp(-x)”

– As a ‘vector file’.
The file should contain 2 columns corresponding to energy (in GeV), flux (in arbitrary units).
For example, in order to specify that the flux is described by the vector file ‘/data/fluxvec.data’,
type:
‘-f /data/fluxvec.data’

– As a ‘1-D histogram (TH1D) in a ROOT file’.
The general syntax is: ‘-f /full/path/file.root,object_name’.
For example, in order to specify that the flux is described by the ‘nue’ TH1D object in
‘/data/flux.root ’, type:
‘-f /data/flux.root,nue’

• -w Forces generation of weighted events.

This option is relevant only if a neutrino flux is specified via the ‘-f’ option. In this context
‘weighted’ refers to an event generation biasing in selecting an initial state (a flux neutrino and
target pair at a given neutrino energy). Internal weighting schemes for generating event kinematics
can still be enabled independently even if ‘-w’ is not set. Don’t use this option unless you under-
stand what the internal biasing does and how to analyze the generated sample. The default option
is to generated unweighted events.

• –seed Specifies the random number seed for the current job.

• –cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed
neutrino cross-sections

7.3. SIMPLE EVENT GENERATION CASES 113

• –event-generator-list Specifies the list of event generators to use in the MC job.

By default, GENIE is loading a list of of tuned and fully-validated generators which allow compre-
hensive neutrino interaction modelling the medium-energy range. Valid settings are the XML block
names appearing in $GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read
Sec. 7.4 explaining why, almost invariantly, for physics studies you should be using a comprehensive
collection of event generators.

• –message-thresholds Specifies the GENIE verbosity level.

The verbosity level is controlled with an XML file allowing users to customize the threshold of
each message stream. See ‘$GENIE/config/Messenger.xml ’ for the XML schema. The ‘Messen-
ger.xml’ file contains the default thresholds used by GENIE. The ‘Messenger_laconic.xml’ and
‘Messenger_rambling.xml’ files define, correspondingly, less and more verbose configurations.

• --unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be
written in the output event file.

By default, all unphysical events are rejected.

• --event-record-print-level Allows users to set the level of information shown when the event
94 record is printed in the screen.

See GHepRecord::Print() for allowed settings.

• --mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

• --cache-file Allows users to specify a ROOT file so that results of calculation cached throughout
a MC job can be re-used in subsequent MC jobs.

Examples

1. To generate 20,000 νµ (PDG code: 14) scattered off Fe56 (PDG code: 1000260560) at an energy of
6.5 GeV, reading pre-computed cross-sections from ‘/data/gxsec.xml ’, and using a random number
seed of 171872, type:

$ gevgen -n 20000 -e 6.5 -p 14 -t 1000260560 -cross-sections /data/gxsec.xml --seed 171872

2. To generate a similar sample as above, but with the νµ energies, between 1 and 4 GeV, selected
from a spectrum that has the x2e(−x2+3)/4 functional form, type:

$ gevgen -n 20000 -e 1,4 -p 14 -t 1000260560 -cross-sections /data/gxsec.xml --seed 171872
-f ‘x*x*exp((-x*x+3)/4)’

3. To generate a similar sample as above, but with the neutrino flux described via the ‘/path/flux.data’
input vector file, type:

$ gevgen -n 20000 -e 1,4 -p 14 -t 1000260560 -cross-sections /data/gxsec.xml --seed 171872
-f /path/flux.data

114 CHAPTER 7. GENERATING NEUTRINO EVENT SAMPLES

4. To generate a similar sample as above, but with the neutrino flux described a ROOT TH1D his-
togram called ‘nu_flux’ stored in ‘/path/file.root ’, type:

$ gevgen -n 20000 -e 1,4 -p 14 -t 1000260560 -cross-sections /data/gxsec.xml --seed 171872
-f /path/file.root,nu_flux

Note that the event generation driver will use only the input histogram bins that fall within the
specified (via the ‘-e’ option) energy range. In the example shown above, all the neutrino flux bins
that do not fall in the 1 to 4 GeV energy range will be neglected. The bins including 1 GeV and 4
GeV will be taken into account. So the actual energy range used is: from the lower edge of the bin
containing 1 GeV to the upper edge of the bin containing 4 GeV.

5. To generate a similar sample as above, but, this time, on a target mix that is made of 95% O16
(PDG code: 1000080160) and 5% H (1000010010), type:

$ gevgen -n 30000 -e 1,4 -p 14 -cross-sections /data/gxsec.xml --seed 171872
-t 1000080160[0.95],1000010010[0.05] -f /path/file.root,nu_flux

Output files Typically, event generation jobs produce two files:

• During job an ascii status file which contains MC job statistics and the most recent event dump
is being updated periodically. The status file is typically named ‘genie-mcjob-<run_number> .status’
and is located in the current directory. Use –mc-job-status-refresh-rate to adjust the refteshrate of
this file.

• The generated events are stored in an output ROOT file, in GENIE’s native GHEP format. The
event file is typically named ‘<prefix> .<run_number> .ghep.root ’ and is located in the current direc-
tory. In addition to the generated event tree, the output file contains a couple of ROOT folders,
‘gconfig’ and ‘genv’, containing, respectivelly, snapshots of your GENIE configuration and running
environment. Chapter 9 describes how to set-up an ‘event loop’ and analyze the generated event
sample.

7.4 Obtaining special samples

7.4.1 Switching reaction modes on/off

The default behaviour of GENIE is to generate ‘comprehensive unweighted’ event samples. All modelled
processes are included and the frequency of process P as well as the occupancy of different parts of the
kinematical phase space {Kn}4 reflects the value of the differetial cross section dnσP /d{Kn}).

An easy way to obtain special samples is by setting the –event-generator-list option available in
most GENIE applications. The option controls the list of event generators loaded into a particular GENIE
MC job. Valid settings for this option can be found in ‘$GENIE/config/EventGeneratorListAssembler.xml ’
(the name of each <param_set> ... </param_set> XML block). New parameter sets can be trivially
added by the user.

Please note that this is primarily a GENIE developer option which users should handle with care. In
the overwhelming majority of cases, it is only poor understanding of neutrino interaction physics that may
lead one thinking that a particular setting is appropriate for generating the special sample one requires.

4Such as, for example, {W , Q2} or {x, y}

7.4. OBTAINING SPECIAL SAMPLES 115

In general, we do not recommend switching-off generator-level reaction modes. These modes should be
treated by the user as internal, generator-specific “labels”. No detector measures generator-level reaction
modes like CCQE or NC resonance production. Detectors measure final states / topologies like, for
example, {1µ−, 0π}, {1µ−, 1π+}, {0µ−, 1π0}, {1 track, 1 shower}, {1 µ-like ring} etc depending on
granularity, thresholds and PID capabilities. No final state / topology is a proxy for any particular
reaction mode (and vice versa). Intranuclear re-scattering in particular causes significant migration
between states (see Table 17.4).
Examples:

1. {1µ−, 0π} is mostly νµ CCQE but this particular final state can also come about, for example, by
νµ resonance production followed by intranuclear pion absorption.

2. νµ CCQE yields mostly {1µ−, 0π} final states but, occasionaly, can yield {1µ−, 1π} if the recoil
nucleon re-interacts.

3. NC1π0 final states can be caused by all

(a) NC elastic followed by nucleon rescattering,

(b) NC resonance neutrino-production,

(c) NC non-resonance background,

(d) low-W NC DIS,

(e) NC coherent scattering.

Each such NC1π0 source contributes differently to the observed pion momentum distribution.

7.4.2 Event cherry-picking

7.4.2.1 The gevpick cherry-picking utility

Name

gevpick - Reads a list of GENIE event files (GHEP format), ‘cherry-picks’ events with a given topology
and writes them out in a separate file. The output tree contains two additional branches to aid book-
keeping by maintaining a ‘link’ to the source location of each cherry-picked event. For each such event
we store a) the name of the original file and b) its original event number.

Source

The source code for this application is in ‘$GENIE/src/stapp/gEvPick.cxx ’

Synopsis

gevpick
-i input_file_list
-t cherry_picked_topology
[-o output_file_name]

where [] denotes an optional argument.

116 CHAPTER 7. GENERATING NEUTRINO EVENT SAMPLES

Description

The following options are available:

-i Specifies the input file(s).
Wildcards accepted, eg ‘-i “/data/genie/pro/gntp.*.ghep.root”’.

-t Specifies the event topology to cherry-pick. The event topology to cherry-pick can be any of
the following strings:

• ‘all’: Selet all events (basically merges all files into one)

• ‘numu_cc_1pip’: Selects νµ CC events with 1 π+ (and no other pion) in final state.

• ‘numu_cc_1pi0’: Selects νµ CC events with 1 π0 (and no other pion) in final state.

• ‘numu_cc_1pim’: Selects νµ CC events with 1 π− (and no other pion) in final state.

• ‘numu_nc_1pip’: Selects νµ NC events with 1 π+ (and no other pion) in final state.

• ‘numu_nc_1pi0’: Selects νµ NC events with 1 π0 (and no other pion) in final state.

• ‘numu_nc_1pim’: Selects νµ NC events with 1 π− (and no other pion) in final state.

• ‘numu_cc_hyperon’: Selects νµ CC events with at least 1 hyperon (Σ+, Σ0, Σ−, Λ0, Ξ0, Ξ−, Ω−)
in the final state.

• ‘numubar_cc_hyperon’: Selects ν̄µ CC events with at least 1 hyperon in the final state.

• ‘cc_hyperon’: Selects CC events with at least 1 hyperon in the final state.

-o Specifies the output file name. This in an optional argument. If unset, the output file name will be
constructed as: ‘gntp.<topology>.ghep.root’ .

Examples

1. Read all events in all ‘/data/pro2010a/*.ghep.root’ files and cherry-pick νµ NC1π0 events:

$ gevpick -i “/data/pro2010a/*ghep.root” -t numu_nc_1pi0

The cherry-picked event sample gets saved in the ‘gntp.numu_nc_1pi0.ghep.root ’ file output (de-
fault name)

• Cherry-picking a new topology

More topologies can be trivially added. Please send your request to the GENIE authors.

7.4.3 The Event Library Interface Generator
The purpose of the "EvtLib" generator is to read from an external library of cross-sections and pre-
computed final particle kinematics (most likely computed using an alternative neutrino generator). For
each neutrino GENIE interacts, it will use the appropriate cross-section from the file, and then use the
kinematics from the library entry with the closest-matching energy. Within the limits of the library
statistics, this will then reproduce the physics of the external generator, but making use of the flux and
geometry handling of GENIE.

7.4. OBTAINING SPECIAL SAMPLES 117

7.4.3.1 Using the generator

The external event library generator is implemented as a new GENIE tune i.e. “--tune EX00_00a_00_000”.
The corresponding tune directory is where you will find relevant files to control the behaviour of the sys-
tem.

The first to do is to tell the system where your event library is located. This is done changing a
parameter which is in “$GENIE/config/CommonParam.xml”. The parameter is in the “EventLib” set
called and it is called “EventLibraryPath”. This parameter supports expansion of environment variables
like “$MY_LIB_DIR/my_lib.root”. The file is clearly the most important part of the EventLibrary interface
and it is described in 7.4.3.2.

You will likely want to first generate cross-section splines. This is done in the usual way, e.g.

$ gmkspl -p 14 -t 1000060120 -o evtlibxsec.xml --tune EX00_00a_00_000

and then use them with a command like

$ gevgen -e 1,3 -f 1 -p 14 -t 1000060120 --tune EX00_00a_00_000 \
--cross-sections /path/to/evtlibxsec.xml

7.4.3.2 Format of the library file

The library should consist of a single ROOT TFile, with a relatively simple format. This format is
optimized for space on disk. At the top level, a directory for each element for which a library exists,
named with the chemical symbol according to the name defined by ROOT TPDGParticle::Title(), eg
"C12/" or "Ar40/". Within that directory, directories "cc/ " and "nc/ ". Within those, directories for
the different neutrino flavors supported, e.g. "nu_e/ " or "nu_mu_bar/ ". Within these directories, the
cross-section and library of event kinematics for the relevant element, interaction current, and neutrino
flavor.

The total interaction cross section is represented as a TGraph named "xsec", The x-axis is in GeV
and the y-axis in 10−38cm2/nucleus. The library should be a TTree named "records" with one row per
library event. The required branches are:

• “Enu” (float) - The true energy of the incoming neutrino

• “prod_id” (integer) - Intended to carry external generator information, such as an interaction type
enumeration. Currently unused, but must exist in library.

• “nparts” (integer) - total number of final state particles

• “pdg” (array of integers) - PDG codes of the final state particles

• “E” (array of floats) - energies of the final state particles (GeV)

• “px”, “py”, “pz” (each an array of floats) - The momenta of the final state particles in GeV/c. pz is
taken along the direction vector of the incoming neutrino. px are the components orthogonal to pz

Sketch of the overall file structure:

118 CHAPTER 7. GENERATING NEUTRINO EVENT SAMPLES

H1/
...

C12/
cc/

nu_mu/
TGraph xsec
TTree records

nu_mu_bar/
...

nu_e/
...

nc/
nu/

...
nu_bar/

...
O16/

...
Cl35/

...

Chapter 8

Using a Realistic Flux and Detector
Geometry

8.1 Introduction

The main task of GENIE is to simulate the complex physics processes taking place when a neutrino is
scattered off a nuclear target. The generator employs advanced, heavily validated models to describe the
primary scattering process, the neutrino-induced hadronic multiparticle production and the intra-nuclear
hadron transport and re-scattering.

Event generation for realistic experimental setups presents neutrino generators with additional com-
putational challenges. The physics generator is required to handle a large number of nuclear targets
(ranging from as light as H1 to as heavy as Pb208). Moreover, when simulating neutrino interactions
in detectors (such as the JPARC and NuMI near detectors) exposed to a non-uniform neutrino flux
changing rapidly across the detector volume, it is particularly important to take into account both the
detailed detector geometry and the spatial dependencies of the flux. This ensures the proper simulation
of backgrounds and avoids introducing highly non-trivial MC artifacts.

The GENIE framework provides many off-the-shelf components for simulating neutrino interactions in
realistic experimental setups. New components, encapsulating new neutrino fluxes or detector geometry
descriptions, can be trivially added and seamlessly integrated with the GENIE neutrino interaction
physics descriptions.

8.2 Components for building customized event generation appli-
cations

GENIE provides off-the-shelf components for generating neutrino interactions under the most realistic
assumptions integrating the state-of-the-art GENIE neutrino interaction modeling with detailed flux and
detector geometry descriptions. GENIE provides an event generation driver class, GMCJDriver, that can
be used to setup complicated Monte Carlo jobs involving arbitrarily complex, realistic beam flux simula-
tions and detector geometry descriptions. These flux descriptions are typically derived from experiment-
specific beam-line simulations while the detector geometry descriptions are typically derived from CAD
engineering drawings mapped into the Geant4, ROOT or GDML geometry description languages. Obvi-
ously, flux and detector geometry descriptions can take many forms, driven by experiment-specific choices.
GENIE standardizes the geometry navigation and flux driver interfaces. These interfaces define a) the

119

120 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

operations that GENIE needs to perform on the geometry and flux descriptions and b) the information
GENIE needs to extract from these in order to generate events.

Concrete implementations of these interfaces are loaded into the GENIE event generation drivers,
extending GENIE event generation capabilities and allow it to seamlessly integrate new geometry de-
scriptions and beam fluxes.

8.2.1 The flux driver interface

In GENIE every concrete flux driver implements theGFluxI interface. The interface defines what neutrino
flux information is needed by the event generation drivers and how that information is to be obtained.
Each concrete flux driver implements the following methods.

• const PDGCodeList & GFluxI::FluxParticles (void)
Declare the list of flux neutrinos that can be generated. This information is used for initialization
purposes, in order to construct a list of all possible initial states in a given event generation run.

• double GFluxI::MaxEnergy (void)
Declare the maximum energy. Again this information is used for initialization purposes, in order
to calculate the maximum possible interaction probability in a given event generation run. Since
neutrino interaction probabilities are tiny and in order to boost the MC performance, GENIE scales
all interaction probabilities in a particular event generation run so that the maximum possible inter-
action probability is 1. That maximum interaction probability corresponds to the total interaction
probability (summed over nuclear targets and process types) for a maximum energy neutrino fol-
lowing a trajectory that maximizes the density-weighted path-lengths for each nuclear target in
the geometry. GENIE adjusts the MC run normalization accordingly to account for that internal
weighting.

• bool GFluxI::GenerateNext (void)
Generate a flux neutrino and specify its pdg code, its weight (if any), its 4-momentum and 4-
position. The 4-position is given in the detector coordinate system (as specified by the input
geometry). Each such flux neutrino is propagated towards the detector geometry but is not required
to cross any detector volume. GENIE will take that neutrino through the geometry, calculate
density-weighted path-lengths for all nuclear targets in the geometry, calculate the corresponding
interactions probability off each nuclear target and decide whether that flux neutrino should interact.
If it interacts, an appropriate GEVGDriver will be invoked to generate the event kinematics.

• int GFluxI::PdgCode (void)
Returns the PDG code of the flux neutrino generated by the most recent GFluxI::GenerateNext
(void) call.

• double GFluxI::Weight (void)
Returns the weight of the flux neutrino generated by the most recent GFluxI::GenerateNext (void)
call.

• const TLorentzVector & GFluxI::Momentum (void)
Returns the 4-momentum of the flux neutrino generated by the most recent GFluxI::GenerateNext
(void) call.

• const TLorentzVector & GFluxI::Position (void)
Returns the position 4-vector of the flux neutrino generated by the most recentGFluxI::GenerateNext
(void) call.

8.2. COMPONENTS FOR BUILDING CUSTOMIZED EVENT GENERATION APPLICATIONS121

• bool GFluxI::End(void)
Notify that no more flux neutrinos can be thrown. This flag is typically raised by flux drivers that
simply read-in beam-line simulation outputs (as opposed to run the beam simulation code on the
fly) so as to notify GENIE that the end of the neutrino flux file has been reached (after, probably,
having been recycled N times). The flag allows GENIE to properly terminate the event generation
run at the end-of-flux-file irrespective of the accumulated number of events, protons on target, or
other metric of exposure.

The above correspond the the common set of operations /information that GENIE expects to be able to
perform / extract from all concrete flux drivers. Specialized drivers may define additional information
that can be utilized in the experiment-specific event generation drivers. One typical example of this is
the flux-specific pass-through information, that is information about the flux neutrino parents such as the
parent meson PDG code, its 4-momentum its 4-position at the production and decay points that GENIE
simply attaches to each generated event and passes-through so as to be used in later analysis stages.

8.2.2 The geometry navigation driver interface

In GENIE every concrete geometry driver implements the GeomAnalyzerI interface. The interface spec-
ifies what information about the input geometry is relevant to the event generation and how that infor-
mation is to be obtained. Each concrete geometry driver implements methods to

• const PDGCodeList & GeomAnalyzerI::ListOfTargetNuclei (void)
Declare the list of target nuclei that can be found in the geometry. This information is used for
initialization purposes, in order to construct a list of all possible initial states in a given event
generation run.

• const PathLengthList & GeomAnalyzerI::ComputeMaxPathLengths (void)
Compute the maximum density-weighted path-lengths for each nuclear target in the geometry.
Again, this is information used for initialization purposes. The computed ‘worst-case’ trajectory is
used to calculate the maximum possible interaction probability in a particular event generation run
which is being used internally to normalize all computed interaction probabilities.

• const PathLengthList & GeomAnalyzerI::ComputePathLengths (const TLorentzVector & x, const
TLorentzVector & p)
Compute density-weighted path-lengths for all nuclear targets, for a ‘ray’ of a given 4-momentum
and starting 4-position. This allows GENIE to calculate probabilities for each flux neutrino to be
scattered off every nuclear target along its path through the detector geometry.

• const TVector3 & GeomAnalyzerI::GenerateVertex (const TLorentzVector & x, const TLorentzVec-
tor & p, int tgtpdg)
Generate a vertex along a ‘ray’ of a given 4-momentum and starting 4-position on a volume con-
taining a given nuclear target. This allows GENIE to place a neutrino interaction vertex within
the detector geometry once an interaction of a flux neutrino off a selected nuclear target has been
generated.

8.2.3 Setting-up GENIE MC jobs using fluxes and geometries

{
...

// get flux driver

122 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

GFluxI * flux_driver = new ... ;

// get geometry driver
GeomAnalyzerI * geom_driver = new ... ;

// create the GENIE monte carlo job driver
GMCJDriver* mcjob_driver = new GMCJDriver;
mcjob_driver->UseFluxDriver(flux_driver);
mcjob_driver->UseGeomAnalyzer(geom_driver);
mcjob_driver->Configure();

...
}

8.3 Built-in flux drivers

GENIE currently contains a host of concrete flux drivers that allow GENIE to be used in many realistic,
experiment-specific situations:

• GJPARCNuFlux : An interface to the JPARC neutrino beam simulation [112] used at SK, nd280,
and INGRID.

• GNuMIFlux : An interface to the NuMI beam simulations [113] used at MINOS, NOvA, MINERvA
and ArgoNEUT.

• GBartolAtmoFlux : A driver for the BGLRS atmospheric flux by G. Barr, T.K. Gaisser, P. Lipari,
S. Robbins and T. Stanev [114].

• GFlukaAtmo3DFlux : A driver for the FLUKA 3-D atmospheric neutrino flux by A. Ferrari, P. Sala,
G. Battistoni and T. Montaruli [115].

• GAstroFlux : A driver for astrophysical neutrino fluxes. Handles both diffuse fluxes and point
sources. (Under development.)

• GCylindTH1Flux : A generic flux driver, describing a cylindrical neutrino flux of arbitrary 3-D
direction and radius. The radial dependence of the neutrino flux is configurable (default: uniform
per unit area). The flux driver may be used for describing a number of different neutrino species
whose (relatively normalised) energy spectra are specified as ROOT 1-D histograms. This driver is
being used whenever an energy spectrum is an adequate description of the neutrino flux.

• GSimpleNtpFlux : An interface for a simple ntuple-based flux that can preserve energy-position
correlations without the format being tied to any particular experimental setup (though individual
files are very much so).

• GMonoEnergeticFlux : A trivial flux driver throwing mono-energetic flux neutrinos along the +z
direction. More that one neutrino species can be included, each with its own weight. The driver is
being used in simulating a single initial state at a fixed energy mainly for probing, comparing and
validating neutrino interaction models.

New concrete flux drivers (describing the neutrino flux from other beam-lines) can be easily developed
and they can be effortlessly and seamlessly integrated with the GENIE event generation framework.

8.3. BUILT-IN FLUX DRIVERS 123

8.3.1 JPARC neutrino flux driver specifics
GJPARCNuFlux provides an interface to the JPARC neutrino beam simulations (JNUBEAM [112]) used
at SK, nd280, and INGRID.

[expand]

8.3.2 NuMI neutrino flux driver specific
GNuMIFlux provides an interface to the NuMI beam simulations used at MINOS, NOvA, MINERvA
and ArgoNeut. This interface can handle all three of the formats used so far in simulating the NuMI
beamline: Geant3-based gnumi, g4numi and flugg. It can also handle the FNAL booster flux when that
is formatted into one of the standard ntuple layouts. These beam simulation files record hadron decays
and sufficient information to calculate new weights and energies for different positions relative to the
beam orgin.

The driver generates a flux to cover a user specified detector "window" after undergoing a coordinate
transformation from the beam system to that of a particular detector. The detector specific windows
and transformations are encapsulated in the ‘$GENIE/src/FluxDriver/GNuMINtuple/GNuMIFlux.xml ’
file. Users can extend what is available by modifying this file and putting a copy in a location spec-
ified by GXMLPATH="/path/to/location". Additional "param_set" sections allow new configurations and
these can be based on modifications of select parameters of an existing "param_set" entry. Extensive
documentation of the setable parameters can be found in the XML file itself.

When theGNuMIFlux is invoked it must be configured by passing the methodGNuMIFlux::LoadBeamSimData()
an input filename string and a config name. The input file name may include wildcards on the file name
but not the directory path. The config name selects a "param_set" from the XML file. The GNuMIFlux
object will by default declare the list of flux neutrinos that it finds in the input files; this can be overridden
to have it ignore entries for flavors the user is not interested in.

8.3.3 FLUKA and BGLRS atmospheric flux driver specifics
GFlukaAtmo3DFlux and GBartolAtmoFlux provide, respectivelly, an interface to the FLUKA-3D (A.
Ferrari, P. Sala, G. Battistoni and T. Montaruli [115]) and BGLRS (G. Barr, T.K. Gaisser, P. Lipari, S.
Robbins and T. Stanev [114]) atmospheric neutrino flux simulations.

Both classes inherit all their functionallity from the GAtmoFlux base class from which they derive.
GFlukaAtmo3DFlux and GBartolAtmoFlux merely define the appropriate binning for each flux simula-
tion:

• The FLUKA flux is given in 40 bins of cosθ, where θ is the zenith angle, from -1 to 1 (bin width
= 0.05) and 61 equally log-spaced energy bins (20 bins per decade) with a minimum energy of 100
MeV. or more details please visit 1.

• The BGLRS flux is given in 20 bins of cosθ from -1 to 1 (bin width = 0.1) and 70 log-spaced energy
bins (20 bins per decade < 10 GeV an 10 bins per decade >10 GeV) with a minimum energy of 100
MeV. For more details please visit 2.

Both the FLUKA and BGLRS flux simulations are distributed as ascii data files for various locations and
solar activity levels. There is one data file per atmospheric neutrino flavor. You can specify the input
files for each neutrino flavor using the ‘void GAtmoFlux::SetFluxFile(int neutrino_code, string filename)’
method. The expected input code is the PDG one and the input filename should include the full path
to the file. You can specify flux files for an arbitrary set of flux neutrino flavors. Neutrino flavors for

1http://pcbat1.mi.infn.it/~battist/neutrino.html
2http://www-pnp.physics.ox.ac.uk/~barr/fluxfiles/

124 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

which you have not specified a flux file will be omitted from the atmospheric neutrino event generation
job. Once you have specified flux files for all neutrino flavors you wish to include you need to call the
‘void GAtmoFlux::LoadFluxData()’ method.

By default, the flux neutrino position and momentum 4-vectors are generated in the Topocentric
Horizontal Coordinate System (+z: Points towards the local zenith / +x: On same plane as local
meridian, pointing south . +y: As needed to make a right-handed coordinate system / Origin: Input
geometry centre). A rotation to a user-defined topocentric coordinate system can be enabled by invoking
the ‘void GAtmoFlux::SetUserCoordSystem (TRotation &)’ method. For a given direction, determined
by the zenith angle θ and the azimuth angle φ, the flux generation surface is a circular area, with radius
RT , which is tangent to a sphere of radius RL centered at the coordinate system origin. These two radii
can be set using the ‘void GAtmoFlux::SetRadii (double RL, double RT)’ method. Obviously, RT and RL
must be appropriately chosen so that the flux generation surface is always outside the input geometry
volume and so that, for every given direction, the ‘shadow’ of the generation surface covers the entire
geometry (see Fig. 8.1).

Energy cuts can be specified using the ‘void GAtmoFlux::ForceMinEnergy(double Emin)’ and ‘void
GAtmoFlux::ForceMaxEnergy(double Emax)’ methods. Finally, the atmospheric neutrino flux drivers
can generate both weighted and unweighted flux neutrinos (with the unweighted-mode used as default).
In the weighted-mode the energy is generated logarithmically and the zenith angle cosine is generated
uniformly and, after a neutrino species has been selected, the event weight is set to be the flux histogram
bin content for the given neutrino species and for the given energy and zenith angle cosine. The user
choice can be registered using the ‘void GAtmoFlux::GenerateWeighted(bool option)’ method.

8.3.4 Generic histogram-based flux specifics

The GCylindTH1Flux is generic flux driver, describing a cylindrical neutrino flux of arbitrary 3-D direc-
tion and radius. The direction of the flux rays (in 3-D) can be specified using the ‘void GCylindTH1Flux::SetNuDirection(const
TVector3 &)’ method while the radius of the cylinder is specified using ‘void GCylindTH1Flux::SetTransverseRadius(double)’.
The flux generation surface is a circular area defined by the intersection of the flux cylinder with a plane
which is perpendicular to the flux ray direction. To fully specify the flux neutrino generation surface
the user needs to specify the centre of that circular area (see ‘beam spot’ in Fig. 8.2) using the ‘void
GCylindTH1Flux::SetBeamSpot(const TVector3 & spot)’ method. Obviously the ‘beam spot’ should be
placed upstream of the detector volume.

The radial dependence of the neutrino flux can be configured using the ‘void GCylindTH1Flux::SetRadialDependence(string
rdep)’ method. The expected input is the functional form of the RT -dependence (with RT denoted as
x). By default, the driver is initialized with SetRadialDependence(“x”), so flux neutrinos are generated
uniformly per unit area.

The flux driver may be used for describing a number of different neutrino species whose (relatively nor-
malised) energy spectra are specified as ROOT 1-D histograms (TH1D). To input the energy distribution
of each neutrino species use GCylindTH1Flux::AddEnergySpectrum (int nu_pdgc, TH1D * spectrum)’.

Obviously, when using GCylindTH1Flux, no energy-position correlation is present. This may or
may-not be a good approximation depending on the specifics of your experimental setup and analysis.
If energy-position correlation is important (and known) then consider using the GSimpleNtpFlux flux
driver. This correlation is also built-in in the specialized JPARC, NuMI and atmospheric flux drivers,
described in this chapter, which you should be utilizing if relevant to your application.

8.3.5 Generic ntuple-based flux specifics

The GSimpleNtpFlux flux driver provides an interface for a simple ntuple-based flux that can preserve
energy-position correlations without the format being tied to any particular experimental setup (though

8.3. BUILT-IN FLUX DRIVERS 125

x

y

z

T
R

φ

θ

detector

flux generation
surface

L
R

flux neutrinos

Figure 8.1: Construction of flux generation surface for the atmospheric neutrino flux drivers. For a given
direction, determined by the zenith angle θ and azimuth angle φ, the flux generation surface is a circular
area, with radius RT , which is tangent to a sphere of radius RL centered at the coordinate system origin.
RT and RL must be appropriately chosen so that the flux generation surface is always outside the input
geometry volumes and so that, for every given direction, the ‘shadow’ of the generation surface covers
the entire geometry. See text for more details.

126 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

flux neutrinos

flux generation
surface

x

y

z

detector

TR

beam direction

"beam spot"

Figure 8.2: Geometrical setup for the GCylindTH1Flux flux drivers. The diriver allows you to set the
beam direction (in 3-D), and the radius RT of the flux generation surface. To fully specify the position
of the flux generation surface in 3-D the driver allows you to set the ‘beam spot’ 3-vector. Additionally
the RT -dependence can be configured. Multiple neutrino species can be generated in the flux surface,
each one with its own energy distribution and relative normalization. See text for more details.

8.4. BUILT-IN GEOMETRY NAVIGATION DRIVERS 127

individual files are very much so). The basic entry consists a TTree branch with the elements:

• px, py, pz, E: 4-momentum components.

• vtxx, vtxy, vtxz: Neutrino ray origin info (detector coordinates).

• dist: Distance from hadron decay to ray origin.

• wgt: Neutrino weight (generally 1.0).

• metakey: Reference back to meta-data. The "metadata" branch has an entry per file recording
general info such as the list of neutrino flavors found in the entries, the number of protons-on-target
represented by the file (in the case of accelerator based fluxes), the maximum energy, the minimum
and maximum weights, the flux window and a vector of strings for a record of the list of files used
to generate the GSimpleNtp file.

Additional information can be stored in conjunction with the individual entries either by supplemental
classes for branches (ala the optional "numi" branch), or via the flexible "aux" branch which allows
arbitrary vectors of integers and doubles (name info in the metadata allows for keeping track of what
elements represent under the assumption that all entries have identical additions).

When the GSimpleNtpFlux is invoked it needs to be configured by passing the method GSim-
pleNtpFlux::LoadBeamSimData() an input filename string (and a config name that is ignored). The
input file name may include wildcards on the file name but not the directory path. Multiple gsimple flux
files can also be combined into a larger file with the use of the ROOT hadd utility.

The GSimpleNtpFlux is in use by some NuMI experiments as a means of factorizing the computation
necessary for the evaluation of the GNuMIFlux from the actual event generation. Unlike the GNuMIFlux
files, entries can not be positioned for new locations (which would change the entry’s weight and energy)
but they also don’t require the computational burden of doing so. They are meant to be simple and fast.

8.4 Built-in geometry navigation drivers
GENIE currently contains two concrete geometry drivers which are sufficient for all event generation
cases encountered so far:

• ROOTGeomAnalyzer : A geometry driver handling detector geometries specified using ROOT. As
detector geometries specified using Geant4 or GDML can be converted into ROOT geometries, this
driver is being used in all cases where a detailed detector geometry is being passed on to GENIE.

• PointGeomAnalyzer : A trivial geometry corresponding to a single nuclear target or a target mix (a
set of nuclear targets each with its corresponding weight fraction) at a fixed position. This driver
is being used to simulate only given initial states as a means for probing the neutrino interaction
physics modeling or in experimental situations where the detector is being illuminated by a spa-
tially uniform neutrino beam and where the generated interaction vertices do not have any spatial
dependence and can be generated uniformly within volumes of given nuclear targets.

8.4.1 ROOT geometry navigation driver specifics
The ROOTGeomAnalyzer works based on a probing a detailed ROOT geometry to evaluate the mass
distribution seen along individual neutrino ‘rays’ (a starting position in space relative to the detector
geometry and a direction). Each ray is stepped through the geometry from one volume boundary to
the next; each transition to a new volume instantiates a new PathSegment, which are collected into a
PathSegmentList for the ray and which also includes information about the ray itself.

128 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

A PathSegment object records the information about the distance from the ray origin to the entrance
of the volume, the step length in the volume, information about the volume (e.g. medium, material),
positions at the boundaries, and (optionally) the ROOT volume path string (the volume hierarchy in the
geometry). A neutrino ray from the flux is passed through the geometry only once. From the information
recorded in the PathSegmentList the GMCJDriver can be given the density-weighted path-lengths for
all the nuclear targets. If the GMCJDriver decides that an interaction occurred this PathSegmentList is
then used to properly select a vertex position based on the chosen nuclear target.

8.4.1.1 Defining units

The ROOTGeomAnalyzer can be configured to account for differences in length and density units between
the GENIE defaults and what is assumed in the ROOT geometry.

8.4.1.2 Defining a fiducial volume

For ROOT geometries that include representations of material that isn’t of interest, such as the rock
surrounding a cavern hall, the ROOTGeomAnalyzer::SetTopVolName() method allows one to consider
only the material within that volume. In more sophisticated circumstances there might not be a volume
in the ROOT geometry representing the region in which one wants to restrict vertices. More refined
limits can be placed by configuring the ROOTGeomAnalyzer with a concrete implementation of the
GeomVolSelectorI interface.

A concrete implementation of the GeomVolSelectorI interface must provide a method for "trimming"
individual PathSegment items based on information in the segment. Trimming futher restricts the region
of the step within the volume; ranges delineate sub-steps and by this means segments within a volume can
be reduced, split or eliminated. The implementation must also provide methods that gets called at the
start of PathSegmentList trimming and upon completion (these can be dummies). If the implementation
needs to know the ROOT geometry volume path hierarchy then it must signal that.

Two useful examples of GeomVolSelectorI are provided: GeomVolSelectorBasic and GeomVolSelec-
torFiducial. The basic class is configurable to select or reject whole segments based on the volume name,
medium, material and (optionally) volume path string. The fiducial class builds on that base and add
the potential for defining a elementary shape (sphere, cylinder, box, convex polyhedron) in space that is
used to trim segments. This shape does not have to correspond to anything represented in the ROOT
geometry. The cut can be to require considering only material within the shape or only that outside of
the shape.

8.5 Built-in specialized event generation applications

This section discusses specialized GENIE-based event generation applications included in GENIE distri-
butions. These applications integrate the GENIE event generation modules with very specific neutrino
flux and detector geometry descriptions.

• gevgen_t2k : A GENIE-based event generation application for T2K. It integrates GENIE with the
JPARC neutrino beam-line simulation (JNUBEAM) and the geometry descriptions of nd280, 2km,
INGRID and Super-K detectors. (See subsection 8.5.1.)

• gevgen_fnal : A GENIE-based event generation application for the Fermilab experiments (including
DUNE, and the experiments in the NuMI and Booster beam-lines). It integrates GENIE with
the Fermilab neutrino beam-line simulations and the geometry descriptions of MINOS, NOvA,
MINERvA, SBND, MicroBooNE, DUNE and other detectors. (See subsection 8.5.2.)

8.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 129

• gevgen_atmo: A GENIE-based atmospherc neutrino event generation application. It integrates the
GENIE with any of the FLUKA 3-D [115] or BGLRS [114] atmospheric neutrino flux simulations.
Events can be generated for either a simple target mix or a detailed ROOT-based detector geometry
(See subsection 8.5.3.)

Although the above applications have common options, each of the following subsections is entirely self-
contained. Please go directly to the subsection describing the application you are interested at.

8.5.1 Event generation application for the T2K experiment
Name

gevgen_t2k – A GENIE-based event generation application for T2K. It integrates GENIE with the
JPARC neutrino beam-line simulation (JNUBEAM) and the detector geometry descriptions of nd280,
2km, INGRID and Super-K.

Source and build options

The source code for this application is in ‘$GENIE/src/support/t2k/EvGen/gT2KEvGen.cxx ’.
To enable it add ‘--enable-t2k’ during the GENIE build configuration step.

Synopsis

$ gevgen_t2k
-f flux [-p POT_normalization_of_flux_file] [-R]
-g geometry [-t geometry_top_volume_name]
[-m max_path_lengths_xml_file]
[-P] [pre_gen_flux_prob_name]
[-S] [output_pre_gen_flux_prob_name]
[-L geometry_length_units] [-D geometry_density_units]
<-n num_of_events, -c num_of_flux_ntuple_cycles, -e, -E exposure_in_POTs>
[-o output_event_file_prefix] [-r run#]
[-seed random_number_seed] [--cross-section xml_file] [--event-generator-list list_name]
[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]
[--mc-job-status-refresh-rate rate] [--cache-file root_file]
[-h]

where [] denotes an optional argument and <> denotes a group of arguments out of which only one
can be set.

Description

The following options are available:

-f Specifies the input neutrino flux. This option can be used to specify any of:

• A JNUBEAM beam simulation output file and the detector location. The general sytax is:
‘-f /path/flux_file.root,detector_loc(,neutrino_list)’

For more information on the flux ntuples see the JNUBEAM documentation. The ntuple has to
be in ROOT format and can be generated from the distributed HBOOK ntuples using ROOT’s
h2root utility. The detector location can be any of ‘sk’ or the near detector positions ‘nd1’,...,‘nd6’

130 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

simulated by JNUBEAM. The optional neutrino_list is a comma separated list neutrino PDG
codes. It specifies which neutrino flux species to to considered in the event generation job. If no
such neutrino list is specified then, by default, GENIE will consider all neutrino species in the input
flux ntuple. When a JNUBEAM ntuple is used for describing the neutrino flux, GENIE is able to
calculate the POT exposure for the generated event sample and any one of the exposure setting
methods (‘-e’, ‘-E’, ‘-c’, ‘-n’, see below) can be used.

All JNUBEAM information on the flux neutrino parent (parent PDG code, parent 4-position and
4-momentum at the production and decay points etc) is stored in a ‘flux’ branch of the output
event tree and is associated with the corresponding generated neutrino event.

Example 1:
To use the Super-K JNUBEAM flux ntuple from the ‘/t2k/flux/jnubeam001.root ’ file, type:
‘-f /t2k/flux/jnubeam001.root,sk’

Example 2:
To use the 2km flux ntuple [near detector position ‘nd1’ in the jnubeam flux simulation] from the
‘/t2k/flux/jnubeam001.root ’ file, type:
‘-f /t2k/flux/jnubeam001.root,nd1’

Example 3:
To use the nd280 flux ntuple [near detector position ‘nd5’ in the jnubeam flux simulation] from the
‘/t2k/flux/jnubeam001.root ’ file, type:
‘-f /t2k/flux/jnubeam001.root,nd5’

Example 4:
To the same as above but using only the νe and ν̄e flux ntuple entries, type:
‘-f /t2k/flux/jnubeam001.root,nd5,12,-12’

• A set of flux histograms stored in a ROOT file. The general syntax is:
‘-f /path/file.root,neutrino_code[histo],...’

where neutrino_code is a standard neutrino PDG code3 and histo is the corresponding ROOT his-
togram name.

Multiple flux histograms can be specified for different flux neutrino species (see the example given
below). The relative flux normalization for all neutrino species should be represented correctly
at the input histogram normalization. The absolute flux normalization is not relevant: Unlike
when using JNUBEAM ntuples to describe the flux, no POT calculations are performed when plain
histogram-based flux descriptions are employed. One can only control the MC run exposure via the
number of generated events (‘-n’, see below). In this case the POT normalization of the generated
sample is calculated externally.

Since there is no directional information in histogram-based descriptions of the flux, the generated
neutrino vertex is always set to (0,0,0,0). Then it is the detector MC responsibility to rotate the
interaction vectors and plant the vertex 4 Obviously no flux pass-through branch is written out in

3νe: 12, νµ: 14, ντ : 16, ν̄e: -12, ν̄µ: -14 and ν̄τ : -16
4This option is used only for the Super-K simulation where vertices are distributed uniformly in volume by the detector

MC (SKDETSIM). For event generation at the more complex near detectors a JNUBEAM ntuple-based flux description
should be used so as the interaction vertex is properly planted within the input geometry by GENIE.

8.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 131

the neutrino event tree since no such information is associated with flux neutrinos selected from
plain histograms.

Example:
To use the histogram ‘h1’ (representing the νµ flux) and the histogram ‘h2’ (representing the νe
flux) from the ‘/data/flux.root’ file, type:
‘-f /data/flux.root,14[h1],12[h2]’

-p Specifies to POT normalization of the input flux file. This is an optional argument. By
default, it is set to the standard JNUBEAM flux ntuple normalization of 1E+21 POT/detector (for the
near detectors) or 1E+21 POT/cm2 (for the far detector). The input normalization factor will be used to
interpret the flux weights and calculate the POT normalization for the generated neutrino event sample.
The option is irrelevant if a simple, histogram-based description of the neutrino flux is used (see -f option)

-R Instructs the flux driver to start looping over the flux ntuples with a random offset.
This is an optional argument. It may be necessary on some occassions to avoid biases when using very
large input flux files.

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT/Geant4-based geometry description (TGeoManager).
This is the standard option for generating events in the nd280, 2km and INGRID detectors.

Example:
To use the ROOT detector geometry description stored in the ‘/data/geo/nd280.root ’ file, type:
‘-g /data/geo/nd280.root’

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
This is the standard option for generating events in the Super-K detector where the beam profile is
uniform and distributing the event vertices uniformly in the detector volume is sufficient. The tar-
get mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 convention:
10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (i.e. ‘water’) type:
‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

-t Specifies the input top volume for event generation. This is an optional argument. By default,
it is set to be the ‘master volume’ of the input geometry resulting in neutrino events being generated over
the entire geometry volume. If the ‘-t’ option is set, event generation will be confined in the specified
detector volume. The option can be used to simulate events at specific sub-detectors.
Example:

132 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

To generate events in the P0D only, type:
‘-t P0D’

You can use the ‘-t’ option to switch generation on/off at multiple volumes
Example:
‘-t +Vol1-Vol2+Vol3-Vol4’, or
‘-t “+Vol1 -Vol2 +Vol3 -Vol4”’
This instructs the GENIE geometry navigation code to switch on volumes ‘Vol1’ and ‘Vo3’ and switch
off volumes ‘Vol2’ and ‘Vol4’. If the very first character is a ’+’, GENIE will neglect all volumes except
the ones explicitly turned on. Vice versa, if the very first character is a ‘-’, GENIE will keep all volumes
except the ones explicitly turned off.

-m Specifies an XML file with the maximum density-weighted path-lengths for each nuclear
target in the input geometry. This is an optional argument. If the option is not set (and also if
the options -P and -S are not set) GENIE will scan the input geometry to determine the maximum
density-weighted path-lengths for all nuclear targets.then, at the MC job initialization, GENIE will scan
the input geometry to determine the maximum density-weighted path-lengths for all nuclear targets. The
computed information is used for calculating the neutrino interaction probability scale to be used in the
MC job (the tiny neutrino interaction probabilities get normalized to a probability scale which is defined
as the maximum possible total interaction probability, corresponding to a maximum energy neutrino in a
worst-case trajectory maximizing its density-weighted path-length, summed up over all possible nuclear
targets). That probability scale is also used to calculate the absolute, POT normalization of a generated
event sample from the POT normalization of the input JNUBEAM flux ntuple.

Feeding-in pre-computed maximum density-weighted path-lengths results in faster MC job initial-
ization and ensures that the same interaction probability scale is used across all MC jobs in a physics
production job (the geometry is scanned by a MC ray-tracing method and the calculated safe maximum
density-weighted path-lengths may differ between MC jobs).

The maximum density-weighted path-lengths for a Geant4/ROOT-based detector geometry can be
pre-computed using GENIE’s gmxpl utility.

-P Specifies a ROOT file with the pre-calculated interaction probability for each flux neu-
trino in the input flux file, for the top volume and the input geometry. This is an optional argument.
This option is intended to replace the maximum density weighted path-lengths option -m. This option is
new in v2.6.2. The pre-calculated interaction probability method is specific to the flux input (JNUBEAM
flux ntuples), and so has been optimised much more than the maximum density weighted path-lengths
method. The interaction probability for each flux neutrino is pre-calcuated before any events are gen-
erated. The maximum interaction probability is now exact (maximally efficient) and means that the
interaction probability does not need to be recalculated, until we have decided there has been an inter-
action. It is especially fast for complicated geometries. This means that this method is up to 300 times
faster than the -m option. The -P option can be used in one of two ways. The first is to pre-calculate the
interaction probabilites in a separate job (using the -S option of gevgen_t2k, see below). This is especially
good for larger flux files with > O(100000) entries, as the time to pre-calculate interaction probabilities
becomes comparable to the event generation time. For small flux files, the amount of bookkeeping when
using pre-calculated interaction probabities means that generating interaction probabilites at the start of
each job is faster (you should run -P with no arguments). Note that if none of -P, -S and -m are set,
then GENIE will scan the input geometry to determine the maximum density-weighted path-lengths for
all nuclear targets, during initalization of the MC job.

-S Specifies a location to save a ROOT file with the calculated interaction probability for
each flux neutrino in the input flux file, for the top volume and the input geometry. This is an optional
argument. It is used to create pre-calculated interaction probabilities for input into the -P option. You

8.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 133

should make sure to use exactly the input flux file, input geometry, top volume name, neutrino flavours,
etc... arguments in your gevgen_t2k submission line for your pre-calculation of interaction probabili-
ties (-S), and your use of the pre-calculated interaction probabilites (-P). The default output name is
[flux_file_name].[top_volume_name].flxprobs.root. This can be overridden by providing an argument
to the -S option. Note that running gevgen_t2k with this option will not generate any events; the only
output will be a ROOT file contaning the pre-calculated interaction probabilites.

-L Specifies the input geometry length units. This is an optional argument. By default, that
option is set to ‘mm’, the length units used for the nd280 detector geometry description. Possible options
include: ‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument. By default, that
option is set to ‘clhep_def_density_unit’, the density unit used for the nd280 detector geometry descrip-
tion (= ∼1.6E-19 x g/cm3 !). Possible options include: ‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’,...

-c Specifies how many times to cycle a JNUBEAM flux ntuple. This option provides a way to
set the MC job exposure in terms of complete JNUBEAM flux ntuple cycles. On each cycle, every flux
neutrino in the ntuple will be thrown towards the detector geometry.

-e Specifies how many POTs to generate. If this option is set, gevgen_t2k will work out how
many times it has to cycle through the input flux ntuple in order to accumulate the requested statistics.
The program will stop at the earliest complete flux ntuple cycle after accumulating the required statistics.
The generated statistics will slightly overshoot the requested number but the calculated exposure (which
is also stored at the output file) will be exact. This option is only available with JNUBEAM ntuple-based
flux descriptions.

-E Specifies how many POTs to generate. This option is similar to ‘-e’ but the program will
stop immediately after the requested POT has been accumulated, without waiting for the current loop
over the flux ntuple entries to be completed. The generated POT overshoot (with respect to the requested
POT) will be negligible, but the POT calculation within a flux ntuple cycle is only approximate. This
reflects the details of the JNUBEAM beam-line simulation. This option is only available with JNUBEAM
ntuple-based flux descriptions.

-n Specifies how many events to generate. Note that out of the 4 possible ways of setting the
exposure (‘-c’, ‘-e’, ‘-E’, ‘-n’) this is the only available one if a plain histogram-based flux description is
used.

-o Sets the prefix of the output event file. This is an optional argument. It allows you to override
the output event file prefix. In GENIE, the output filename is built as:

prefix.run_number.event_tree_format.file_format where, in gevgen_t2k, by default, prefix: ‘gntp’
and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the MC run number. This is an optional argument. By default a run number of
‘1000’ is used.

–seed Specifies the random number seed for the current job.

–cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed neu-
trino cross-sections

–event-generator-list Specifies the list of event generators to use in the MC job. By default,
GENIE is loading a list of of tuned and fully-validated generators which allow comprehensive neutrino

134 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

interaction modelling the medium-energy range. Valid settings are the XML block names appearing in
$GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read Sec. 7.4 explaining why,
almost invariantly, for physics studies you should be using a comprehensive collection of event generators.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be writ-
ten in the output event file. By default, all unphysical events are rejected.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

–cache-file Allows users to specify a ROOT file so that results of calculation cached throughout a
MC job can be re-used in subsequent MC jobs.

-h Prints out the gevgen_t2k syntax and exits.

Examples

1. Generate events (run ‘1001’) using the jnubeam flux ntuple in ‘/data/t2k/flux/07a/jnb001.root ’
and picking up the flux entries for the detector location ‘nd5’ (which corresponds to the ‘nd280m’
location). The job will load the nd280 geometry from ‘/data/t2k/geom/nd280.root ’ and interpret
it assuming the length unit is ‘mm’ and the density unit is the default CLHEP one. The job will
stop on the first complete flux ntuple cycle after generating 5E+17 POT. Read pre-computed cross-
section splines from ‘/data/t2k/xsec/xsec.xml ’. Use seed number 1982199 and, also, use the default
GENIE verbosity level.

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5
-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit
--cross-sections /data/t2k/xsec/xsec.xml -e 5E+17 --seed 1982199

2. As before, but now the job will stop after 100 flux ntuple cycles, whatever POT and number of
events that may correspond to.

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5
-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit
--cross-sections /data/t2k/xsec/xsec.xml -c 100 --seed 1982199

3. As before, but now the job will stop after generating 100000 events, whatever POT and number of
flux ntuple cycles that may correspond to.

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5

8.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 135

-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit
--cross-sections /data/t2k/xsec/xsec.xml -n 100000 --seed 1982199

4. As before, but first pre-calculate interaction probilites, and then use them to generate events.

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5
-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit
--cross-sections /data/t2k/xsec/xsec.xml -n 100000 --seed 1982199
-S jnb001.nd280.global.flxprobs.root

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5
-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit
--cross-sections /data/t2k/xsec/xsec.xml -n 100000 --seed 1982199
-P jnb001.nd280.global.flxprobs.root

5. Generate events (run ‘1001’) using the jnubeam flux ntuple in ‘/data/t2k/flux/07a/jnb001.root ’
and picking up the flux entries for the Super-K detector location. This time, the job will not
use any detailed detector geometry description but just (95% O16 + 5% H) target-mix. The job
will stop after generating 50000 events. As before, read pre-computed cross-section splines from
‘/data/t2k/xsec/xsec.xml ’. This time use production-mode verbosity level (set all message thresh-
olds to ‘warning’).

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,sk
-g 1000080160[0.95],1000010010[0.05] -n 50000 --seed 1982199
--cross-sections /data/t2k/xsec/xsec.xml --message-thresholds Messenger_laconic.xml

6. As before, but now the flux is not described using a JNUBEAM ntuple but a set of 1-D histograms
from the ‘/data/flx.root ’ file: The histogram named ‘h1’ will be used for the νe flux, ‘h2’ will will
be used for the ν̄e flux, and ‘h3’ for the νµ flux.

$ gevgen_t2k -r 1001 -f /data/flx.root,12[h1],-12[h2],14[h3]
-g 1000080160[0.95],1000010010[0.05] -n 50000 --seed 1982199
--cross-sections /data/t2k/xsec/xsec.xml --message-thresholds Messenger_laconic.xml

8.5.2 Event generation application for Fermilab neutrino experiments

Name

gevgen_fnal – A GENIE-based event generation application for Fermilab neutrino experiments. It in-
tegrates the GENIE with the Fermilab neutrino beam-line simulations and the geometry descriptions of
DUNE, MINOS, NOvA, MINERvA, ArgoNEUT, MicroBooNE, SBND and other experiments.

Source and build options

The source code for this application is in ‘$GENIE/src/support/fnal/EvGen/gFNALExptEvGen.cxx ’.
To enable it add ‘--enable-numi’ during the GENIE build configuration step.

136 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

Synopsis

$ gevgen_fnal
-f flux
-g geometry [-t top_volume_name_at_geom]
[-F fiducial_cut_string] [-m max_path_lengths_xml_file]
[-L geometry_length_units] [-D geometry_density_units] [-z z_min]
<-n number_of_events, -e exposure_in_POTs>
[-o output_event_file_prefix] [-r run#] [-d debug_flags]
[-seed random_number_seed] [--cross-section xml_file] [--event-generator-list list_name]
[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]
[--mc-job-status-refresh-rate rate] [--cache-file root_file]
[-h]

where [] denotes an optional argument and <> denotes a group of arguments out of which only one
can be set.

Description

The following options are available:

-f Specifies the input neutrino flux. This option can be used to specify any of:

• A gNuMI beam simulation output file and the detector location. The general sytax is:
‘-f /path/flux_file.root,detector_loc(,neutrino_list)’

For more information of the flux ntuples see the gNuMI documentation. The ntuple has to be in
ROOT format and can be generated from the distributed HBOOK ntuples using ROOT’s h2root
utility. See GNuMIFlux.xml for all supported detector locations. The optional neutrino_list is a
comma separated list neutrino PDG codes. It specifies which neutrino flux species to to considered
in the event generation job. If no such neutrino list is specified then, by default, GENIE will
consider all neutrino species in the input flux ntuple. When a gNuMI ntuple is used for describing
the neutrino flux, GENIE is able to calculate the POT exposure for the generated event sample and
any one of the exposure setting methods (‘-e’, ‘-n’, see below) can be used. All gNuMI information
on the flux neutrino parent (parent PDG code, parent 4-position and 4-momentum at the production
and decay points etc) is stored in a ‘flux’ branch of the output event tree and is associated with the
corresponding generated neutrino event.

Example:
To use the gNuMI flux ntuple flux.root at MINOS near detector location ‘/data/flux.root ’ file, type:
‘-f /data/flux.root,MINOS-NearDet’

• A set of flux histograms stored in a ROOT file. The general syntax is:
‘-f /path/file.root,neutrino_code[histo],...’

where neutrino_code is a standard neutrino PDG code5 and histo is the corresponding ROOT
histogram name. Multiple flux histograms can be specified for different flux neutrino species (see the
example given below). The relative flux normalization for all neutrino species should be represented
correctly at the input histogram normalization. The absolute flux normalization is not relevan heret:

5νe: 12, νµ: 14, ντ : 16, ν̄e: -12, ν̄µ: -14 and ν̄τ : -16

8.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 137

Unlike when using gNuMI ntuples to describe the flux, no POT calculations are performed when
histogram-based flux descriptions are employed. One can only control the MC run exposure via the
number of generated events (‘-n’, see below). In this case the POT normalization of the generated
sample is calculated externally.

Since there is no directional information in plain histogram-based descriptions of the flux, the
generated neutrino vertex is always set to (0,0,0,0). Then it is the detector MC responsibility
to rotate the interaction vectors and plant the vertex 6 Obviously no flux pass-through branch is
written out in the neutrino event tree since no such information is associated with flux neutrinos
selected from plain histograms.

Example:
To use the histogram ‘h1’ (representing the νµ flux) and the histogram ‘h2’ (representing the νe
flux) from the ‘/data/flux.root’ file, type:
‘-f /data/flux.root,14[h1],12[h2]’

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT/Geant4-based geometry description (TGeoManager).
Example:
To use the ROOT detector geometry description stored in the ‘/data/geo/nova.root ’ file, type:
‘-g /data/geo/nova.root’

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
This is the standard option for generating events in the Super-K detector where the beam profile is
uniform and distributing the event vertices uniformly in the detector volume is sufficient. The tar-
get mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 convention:
10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (i.e. ‘water’) type:
‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

-t Specifies the input top volume for event generation. This is an optional argument. By default, it
is set to be the ‘master volume’ of the input geometry resulting in neutrino events being generated over
the entire geometry volume. If the ‘-t’ option is set, event generation will be confined in the specified
detector volume. The option can be used to simulate events at specific sub-detectors.
Example:
To generate events in the P0D only, type:
‘-t P0D’

6This option is used only for the Super-K simulation where vertices are distributed uniformly in volume by the detector
MC (SKDETSIM). For event generation at the more complex near detectors a JNUBEAM ntuple-based flux description
should be used so as the interaction vertex is properly planted within the input geometry by GENIE.

138 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

You can use the ‘-t’ option to switch generation on/off at multiple volumes
Example:
‘-t +Vol1-Vol2+Vol3-Vol4’, or
‘-t “+Vol1 -Vol2 +Vol3 -Vol4”’
This instructs the GENIE geometry navigation code to switch on volumes ‘Vol1’ and ‘Vo3’ and switch
off volumes ‘Vol2’ and ‘Vol4’. If the very first character is a ’+’, GENIE will neglect all volumes except
the ones explicitly turned on. Vice versa, if the very first character is a ‘-’, GENIE will keep all volumes
except the ones explicitly turned off.

-m Specifies an XML file with the maximum density-weighted path-lengths for each nuclear target
in the input geometry. This is an optional argument. If the option is not set then, at the MC job
initialization, GENIE will scan the input geometry to determine the maximum density-weighted path-
lengths for all nuclear targets. The computed information is used for calculating the neutrino interaction
probability scale to be used in the MC job (the tiny neutrino interaction probabilities get normalized to
a probability scale which is defined as the maximum possible total interaction probability, corresponding
to a maximum energy neutrino in a worst-case trajectory maximizing its density-weighted path-length,
summed up over all possible nuclear targets). That probability scale is also used to calculate the absolute,
POT normalization of a generated event sample from the POT normalization of the input flux ntuple.

Feeding-in pre-computed maximum density-weighted path-lengths results in faster MC job initial-
ization and ensures that the same interaction probability scale is used across all MC jobs in a physics
production job (the geometry is scanned by a MC ray-tracing method and the calculated safe maximum
density-weighted path-lengths may differ between MC jobs).

The maximum density-weighted path-lengths for a Geant4/ROOT-based detector geometry can be
pre-computed using GENIE’s gmxpl utility.

-L Specifies the input geometry length units. This is an optional argument. By default it is set
to ‘mm’. Possible options include: ‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument. By default it is set
to ‘g_cm3’. Possible options include: ‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’ (= ∼1.6E-19 x
g/cm3 !),...

-F Applies a fiducial cut. This is an optional argument. Applies a fiducial cut (for now hard-coded).
Only used with ROOT-based detector geometry descriptions. If the input string starts with "-" then
reverses sense (ie. anti-fiducial).

-S Number of rays to use to scan geometry for max path length. This is an optional argument.
Number of rays to use to scan geometry for max path length. Only used with ROOT-based detector
geometry descriptions (and the gNuMI ntuple-based flux description). If ‘+N’ : Scan the geometry using
N rays generated using flux neutrino directions pulled from the input gNuMI flux ntuple. If ‘-N’ : Scan the
geometry using N rays x N points on each face of a bounding box. Each ray has a uniformly distributed
random inward direction.

-z Z from which to start flux ray in user-world coordinates. This is an optional argument. If
left unset then flux originates on the flux window [No longer attempts to determine z from geometry,
generally got this wrong].

-o Sets the prefix of the output event file. This is an optional argument. It allows you to override the

8.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 139

output event file prefix. In GENIE, the output filename is built as:
prefix.run_number.event_tree_format.file_format where, in gevgen_numi, by default, prefix: ‘gntp’

and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the MC run number. This is an optional argument. By default a run number of ‘0’
is used.

–seed Specifies the random number seed for the current job.

–cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed neu-
trino cross-sections

–event-generator-list Specifies the list of event generators to use in the MC job. By default,
GENIE is loading a list of of tuned and fully-validated generators which allow comprehensive neutrino
interaction modelling the medium-energy range. Valid settings are the XML block names appearing in
$GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read Sec. 7.4 explaining why,
almost invariantly, for physics studies you should be using a comprehensive collection of event generators.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be writ-
ten in the output event file. By default, all unphysical events are rejected.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

–cache-file Allows users to specify a ROOT file so that results of calculation cached throughout a
MC job can be re-used in subsequent MC jobs.

-h Prints out the gevgen_fnal syntax and exits.

Examples

8.5.3 Event generation application for atmospheric neutrinos

Name

gevgen_atmo – A GENIE-based atmospheric neutrino event generation application. It integrates GENIE
with any of the FLUKA 3-D [115] or BGLRS [114] atmospheric neutrino flux simulations. Events can be
generated for either a simple target mix or a detailed ROOT-based detector geometry.

140 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

Source and build options

The source code for this application is in ‘$GENIE/src/support/atmo/EvGen/gAtmoEvGen.cxx ’.
To enable it add ‘--enable-atmo’ during the GENIE build configuration step.

Synopsis

$ gevgen_atmo
-f flux -g geometry
[-R rotation_from_topocentric_hz_frame]
[-t geometry_top_volume_name] [-m max_path_lengths_xml_file]
[-L geometry_length_units] [-D geometry_density_units]
<-n number_of_events, -e exposure_in_terms_of_kton_x_yrs>
[-E energy_range] [-o output_event_file_prefix] [-r run#]
[-seed random_number_seed] [--cross-sections xml_file] [--event-generator-list list_name]
[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]
[--mc-job-status-refresh-rate rate] [--cache-file root_file]
[-h]

where [] denotes an optional argument and <> denotes a group of arguments out of which only one
can be set.

Description

The following options are available:

-f Specifies the input neutrino flux. This option can be used to specify the input flux simulation
data files. The general syntax is: ‘-f simulation:/path/file[neutrino_code],...’. The ‘simulation’
part of the option can be either ‘FLUKA’ or ‘BGLRS’, depending on the origin of your input data files.
GENIE will use the input tag to use the appropriate input file format and to bin the input data according
to the choices of the FLUKA and BGLRS flux simulation authors. See Section 8.3.3 for more details.
The ‘/path/file.data[neutrino_code]’ part of the option can be repeated multiple times (separated by
commas), once for each flux neutrino species you wish to consider.
Example 1:

‘-f FLUKA:/data/sdave_numu07.dat[14],/data/sdave_nue07.dat[12]’
This option will instruct GENIE to use the ‘/data/sdave_numu07.dat’ FLUKA flux simulation file

for νµ and the ‘/data/sdave_nue07.dat’ file for νe. No other flux species will be considered in this MC
job.
Example 2:

‘-f BGLRS:/data/flux10_271003_z.kam_nue[12]’
This option will instruct GENIE to use the ‘/data/flux10_271003_z.kam_nue’ BGLRS flux simula-

tion file for νe. No other flux species will be considered in this MC job.

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT/Geant4-based geometry description (TGeoManager).

Example:
To use the ROOT detector geometry description stored in the ‘nd280-geom.root ’ file, type:
‘-g /some/path/nd280-geom.root’

8.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 141

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
This option should only be used when the beam and/or detector are sufficiently uniform. The tar-
get mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 convention:
10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (i.e. ‘water’) type:
‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

-R Specifies a rotation from the default topocentric horizontal coordinate system to a user-defined
frame. The rotation is specified by the 3 Euler angles ϕ, ϑ, ψ. The Euler angles are used for creting
a ROOT TRotation object which gets applied to the flux neutrino position and momentum 4-vectors
before that flux neutrino is fired towards the detector. The user has the option to select between the
X and Y conventions. By default, the X-convention is used. Additionally, the user can request GENIE
to invert the rotation matrix before applying it to the flux neutrino vectors. Please note the following
extract from the ROOT TRotation documentation: “Euler angles usually define the rotation of the new
coordinate system with respect to the original system, however, the TRotation class specifies the rotation
of the object in the original system (an active rotation). To recover the usual Euler rotations (ie. rotate
the system not the object), you must take the inverse of the rotation."

The Euler angles are input as a comma separated list. The general syntax for specifying the rotation is:
‘-R convention:phi,theta,psi’ where ‘convention’ is either X (for X-convention), Y (for Y-convention),
X^-1 or Y^-1 (as previously, but using the inverse rotation matrix instead).

Example 1:
To set the Euler angles ϕ=3.14, ϑ=1.28, ψ=1.0 using the X-convention, type: ‘-R 3.14,1.28,1.0’, or
‘-R X:3.14,1.28,1.0’.

Example 2:
To set the Euler angles ϕ=3.14, ϑ=1.28, ψ=1.0 using the Y-convention, type: ‘-R Y:3.14,1.28,1.0’.

Example 3:
To set the Euler angles ϕ=3.14, ϑ=1.28, ψ=1.0 using the Y-convention, and then use the inverse rotation
matrix, type: ‘-R Y^-1:3.14,1.28,1.0’.

-t Specifies the input top volume for event generation. This is an optional argument. By default, it
is set to be the ‘master volume’ of the input geometry resulting in neutrino events being generated over
the entire geometry volume. If the ‘-t’ option is set, event generation will be confined in the specified
detector volume. The option can be used to simulate events at specific sub-detectors.

-m Specifies an XML file with the maximum density-weighted path-lengths for each nuclear target

142 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

in the input geometry. This is an optional argument. If the option is not set then, at the MC job
initialization, GENIE will scan the input geometry to determine the maximum density-weighted path-
lengths for all nuclear targets. The computed information is used for calculating the neutrino interaction
probability scale to be used in the MC job (the tiny neutrino interaction probabilities get normalized to
a probability scale which is defined as the maximum possible total interaction probability, corresponding
to a maximum energy neutrino in a worst-case trajectory maximizing its density-weighted path-length,
summed up over all possible nuclear targets). That probability scale is also used to calculate the absolute
normalization of generated sample in terms of kton*yrs.

Feeding-in pre-computed maximum density-weighted path-lengths results in faster MC job initial-
ization and ensures that the same interaction probability scale is used across all MC jobs in a physics
production job (the geometry is scanned by a MC ray-tracing method and the calculated safe maximum
density-weighted path-lengths may differ between MC jobs).

The maximum density-weighted path-lengths for a Geant4/ROOT-based detector geometry can be
pre-computed using GENIE’s gmxpl utility.

-L Specifies the input geometry length units. This is an optional argument. By default it is set
to ‘m’. Possible options include: ‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument. By default it is set
to ‘kg_m3’. Possible options include: ‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’ (= ∼1.6E-19 x
g/cm3 !),...

-n Specifies how many events to generate.

-e Specifies the requested exposure in terms of kton*yrs.

Not implemented yet.

-E Specifies an energy range in GeV. This is an optional argument. Must be a set of comma-separated
values. By default GENIE will generate atmospheric neutrinos between 0.5 and 50 GeV.

Example: To generate events between 1 and 100 GeV type: ‘-E 1,100’

-o Sets the prefix of the output event file. This is an optional argument. It allows you to override the
output event file prefix. In GENIE, the output filename is built as:

prefix.run_number.event_tree_format.file_format where, in gevgen_atmo, by default, prefix: ‘gntp’
and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the MC run number. This is an optional argument. By default a run number of ‘100000000’
is used.

–seed Specifies the random number seed for the current job.

–cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed neu-
trino cross-sections

–event-generator-list Specifies the list of event generators to use in the MC job. By default,
GENIE is loading a list of of tuned and fully-validated generators which allow comprehensive neutrino
interaction modelling the medium-energy range. Valid settings are the XML block names appearing in
$GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read Sec. 7.4 explaining why,

8.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 143

almost invariantly, for physics studies you should be using a comprehensive collection of event generators.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be writ-
ten in the output event file. By default, all unphysical events are rejected.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

–cache-file Allows users to specify a ROOT file so that results of calculation cached throughout a
MC job can be re-used in subsequent MC jobs.

-h Prints out the gevgen_atmo syntax and exits.

Examples

1. Generate 100k events (run number ‘100000013’) using the FLUKA 3-D flux simulation output files
‘/data/flux/atmo/sdave_numu07.dat’, for νµ, and ‘/data/flux/atmo/sdave_nue07.dat’, for νe. Do
not consider any other flux neutrino species. Generate events for water (weight fraction: 88.79%
O16 and 11.21% H) and only in the 1-15 GeV energy range. Read pre-computed cross-section
splines from ‘/data/xsec/xsec.xml ’. Use seed number 87218 and production mode verbosity level
(all message thresholds set to warning).
$ gevgen_atmo -n 100000 -r 100000013 -e 1,15
-f FLUKA:/data/flux/atmo/sdave_numu07.dat[14],/data/flux/atmo/sdave_nue07.dat[12]
-g 1000080160[0.8879],1000010010[0.1121]
--cross-sections /data/xsec/xsec.xml
--seed 87218 --message-thresholds Messenger_laconic.xml

2. Like above but, instead of generating events in water, generate events using the detailed ROOT-
based detector geometry description in file ‘/data/geo/HyperKamionande.root’. Let GENIE know
that the geometry file expresses length in ‘mm’ and densities in ‘gr/cm3’. Don’t generate events
over the the entire volume but only within the volume named ‘InnerDetector’.
$ gevgen_atmo -n 100000 -r 100000013 -e 1,15
-f FLUKA:/data/flux/atmo/sdave_numu07.dat[14],/data/flux/atmo/sdave_nue07.dat[12]
-g /data/geo/HyperKamiokande.root -t InnerDetector -L mm -D g_cm3
--cross-sections /data/xsec/xsec.xml
--seed 87218 --message-thresholds Messenger_laconic.xml

144 CHAPTER 8. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

Chapter 9

Analyzing Output Event Samples

9.1 Introduction

9.2 Printing-out events

9.2.1 The gevdump utility

Name

gevdump - A GENIE utility printing-out GENIE GHEP event records.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/ gEvDump.cxx’.

Synopsis

$ gevdump -f filename [-n n1[,n2]]

where [] denotes an optional argument.

Description

The following options are available:

• -f Specifies a GENIE GHEP event file.

• -n Specifies an event number or a range of event numbers. This is an optional argument. By default
all events will be printed-out.

Notes

You can fine-tune the amount of information that gets printed-out by tweaking the ‘GHEPPRINTLEVEL’
environmental variable (see Appendix ??)

145

146 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

Examples

1. To print-out all events from ‘/data/sample.ghep.root ’, type:

$ gevdump -f /data/sample.ghep.root

2. To print-out the first 500 events from ‘/data/sample.ghep.root ’, type:

$ gevdump -f /data/sample.ghep.root -n 0,499

3. To print-out event 178 from ‘/data/sample.ghep.root ’, type:

$ gevdump -f /data/sample.ghep.root -n 178

9.3 Event loop skeleton program

An‘event loop’ skeleton is given below. You may insert your event analysis code where is indicated be-
low. Please look at the next section for information on how to extract information from the ‘event’ object.

{
...
// Open the GHEP/ROOT file
string filename = /data/sample.ghep.root;
TFile file(filename.c_str(), READ);

// Get the tree header & print it
NtpMCTreeHeader * header =
dynamic_cast<NtpMCTreeHeader*> (file.Get("header"));

LOG(test, pINFO) << *header;

// Get the GENIE GHEP tree and set its branch address
TTree * tree = dynamic_cast<TTree*> (file.Get(gtree));
NtpMCEventRecord * mcrec = 0;
tree->SetBranchAddress(gmrec, &mcrec);

// Event loop
for(Long64_t i=0; i<tree->GetEntries(); i++){
tree->GetEntry(i);

// print-out the event
EventRecord & event = *(mcrec->event);
LOG(test, pINFO) << event;

// put your event analysis code here
...
...

9.3. EVENT LOOP SKELETON PROGRAM 147

mcrec->Clear();
}
...

}

An‘event loop’ skeleton can be found in ‘$GENIE/src/test/testEveltLoop.cxx’. Copy this file and use
it as a starting point for your event loop.

148 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

9.4 Extracting event information
The readers are instructed to spend some time browsing the GENIE doxygen documentation, especially
the classes defined in the Interaction and GHEP packages, and familiarize themselves with the public
methods. Some examples on how to extract information from an ‘event’ objects are given below.

Examples

1. Extract the interaction summary for the given event and check whether it is a QEL CC event
(excluding QEL CC charm production):

{
...

Interaction * in = event.Summary();

const ProcessInfo & proc = in->ProcInfo();
const XclsTag & xclsv = in->ExclTag();

bool qelcc = proc.IsQuasiElastic() && proc.IsWeakCC();
bool charm = xclsv.IsCharm();

if (qelcc && !charm)
{

...
}
...
}

2. Get the energy threshold for the given event:

{
...

Interaction * in = event.Summary();

double Ethr = in->PhaseSpace().Threshold();
...
}

3. Get the momentum transfer Q2 and hadronic invariant mass W , as generated during kinematical
selection, for RES CC event:

{
...
const ProcessInfo & proc = in->ProcInfo();
const Kinematics & kine = in->Kine();

9.4. EXTRACTING EVENT INFORMATION 149

bool selected = true;

if (proc.IsResonant() && proc.IsWeakCC())
{

double Q2s = kine.Q2(selected);
double Ws = kine.W (selected);

}
...
}

4. Calculate the momentum transfer Q2, the energy transfer ν, the Bjorken x variable, the inelasticity
y and the hadronic invariant mass Wdirectly from the event record:

{
...
// get the neutrino, f/s primary lepton and hit
// nucleon event record entries
//
GHepParticle * neu = event.Probe();
GHepParticle * fsl = event.FinalStatePrimaryLepton();
GHepParticle * nuc = event.HitNucleon();

// the hit nucleon may not be defined
// (eg. for coherent, or ve- events)
//
if(!nuc) return;

// get their corresponding 4-momenta (@ LAB)
//
const TLorentzVector & k1 = *(neu->P4());
const TLorentzVector & k2 = *(fsl->P4());
const TLorentzVector & p1 = *(nuc->P4());

// calculate the kinematic variables
// (eg see Part.Phys. booklet, page 191)
//
double M = kNucleonMass;

TLorentzVector q = k1 - k2;

double Q2 = -1 * q.M2();
double v = q.Energy();
double x = Q2 / (2*M*v);
double y = v / k1.Energy();
double W2 = M*M - 2*M*v - Q2;
double W = TMath::Sqrt(TMath::Max(0., W2));

...

150 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

}

5. Loop over particles and count the number of final state pions:

{
...
int npi = 0;

TObjArrayIter iter(&event);
GHepParticle * p = 0;

// loop over event particles
for((p = dynamic_cast<GHepParticle *>(iter.Next()))) {

int pdgc = p->Pdg();
int status = p->Status();

if(status != kIStStableFinalState) continue;

bool is_pi = (pdgc == kPdgPiP ||
pdgc == kPdgPi0 ||
pdgc == kPdgPiM);

if(is_pi) npi++;
}

...
}

6. Get the corresponding NEUT reaction code for a GENIE event:

{
...

int neut_code = utils::ghep::NeutReactionCode(&event);
...

}

9.5 Event tree conversions
You do not need to convert the GENIE GHEP trees in order to analyze the generated samples or pass
them on to a detector-level Monte Carlo. But you can do so if:

• you need to pass GENIE events to legacy systems using already standardized formats,

9.5. EVENT TREE CONVERSIONS 151

• you want to be able to read-in GENIE events without loading any GENIE libraries (eg bare-ROOT,
or XML formats),

• you want to extract just summary information and write it out in simpler ntuples.

9.5.1 The gntpc ntuple conversion utility

Name

gntpc – A utility tp converts the native GENIE GHEP event file to a host of plain text, XML or bare-
ROOT formats.

Source

The source code can be found in ‘$GENIE/src/stdapp/gNtpConv.cxx’ .

Synopsis

$ gntpc
-i input_file_name
-f format_of_output_file
[-v format_version_number]
[-c copy_MC_job_metadata?]
[-o output_file_name]
[-n number_of_events_to_convert]

where [] denotes an optional argument.

Description

The following options are available:

-i Specifies the name of the GENIE GHEP file to convert.

-f Specifies the output file format.

This can be any of the following:

• ‘gst’: The standard GENIE Summary Tree (gst) format (see subsection 9.5.2.1).

• ‘gxml’: The GENIE XML event format (see subsection 9.5.2.2).

• ‘ghep_mock_data’: Identical format as the input GHEP file but all information other than final
state particles is hidden.

• ‘rootracker’: A bare-ROOT STDHEP-like event tree. Very similar to the native GHEP tree but
with no dependency on GENIE classes (see subsection 9.5.2.3).

• ‘rootracker_mock_data’: Like ‘rootracker’ but with all information other than final state particles
hidden.

152 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

• ‘t2k_rootracker’: A variation of the ‘rootracker’ format used by some T2K detector MC chains
(nd280). Includes, in addition, tree branches storing JNUBEAM flux simulation ‘pass-through
info’1 (see subsection 9.5.2.3).

• ‘numi_rootracker’: A variation of the ‘rootracker’ format used by some NuMI beamline experi-
ments. Includes, in addition, tree branches storing gNuMI flux simulation pass-through info (see
subsection 9.5.2.3).

• ‘t2k_tracker’: A tracker-type format with tweaks required by the SuperK MC (SKDETSIM) (see
subsection 9.5.2.4).

• ‘nuance_tracker’: [Depreciated] The original tracker format (see subsection 9.5.2.4).

• ‘ghad’: [Depreciated] NEUGEN-style text-based format for hadronization studies.

• ‘ginuke’: A summary ntuple for intranuclear-rescattering studies using simulated hadron-nucleus
samples.

-v Specifies the output file format version number.

This is an optional arument. It defaults to the latest version of each specified format. The option
exists to maintain ability to generate old versions of certain formats.

-o Specifies the output file name.

This is an optional argument. By default, the output file name is constructed from the input GHEP
file name by removing the ‘.ghep.root’ (or just the ‘.root’ one if ‘.ghep’ is not present) extension and by
appending:

• ‘gst’ format files: ‘.gst.root ’

• ‘gxml’ format files: ‘.gxml ’

• ‘ghep_mock_data’ format files: ‘.mockd.ghep.root ’

• ‘rootracker’ format files: ‘.gtrac.root ’

• ‘rootracker_mock_data’ format files: ‘.mockd.gtrac.root ’

• ‘t2k_rootracker’ format files: ‘.gtrac.root ’

• ‘numi_rootracker’ format files: ‘.gtrac.root ’

• ‘t2k_tracker’ format files: ‘.gtrac.dat ’

• ‘nuance_tracker’ format files: ‘.gtrac_legacy.dat ’

• ‘ghad’ format files: ‘.ghad.dat ’

• ‘ginuke’ format files: ‘.ginuke.root ’

-n Specifies the number of events to convert.

This is an optional argument. By default, gntpc will convert all events in the input file.
1This refers to parent meson information for every flux neutrino for which GENIE generated an interaction.

9.5. EVENT TREE CONVERSIONS 153

Examples:

1. To convert all events in the input GHEP file ‘myfile.ghep.root ’ into the
‘t2k_rootracker’ format, type:

$ gntpc -i myfile.ghep.root -f t2k_rootracker

The output file is automatically named ‘myfile.gtrac.root ’

2. To convert the first 20,000 events in the GHEP file ‘myfile.ghep.root ’ into the ‘gst’ format and name
the output file ‘out.root ’, type:

$ gntpc -i myfile.ghep.root -f gst -n 20000 -o out.root

9.5.2 Formats supported by gntpc

9.5.2.1 The ‘gst’ format

The ‘gst’ is a GENIE summary ntuple format. It is a simple, plain ntuple that can be easily used for
plotting in interactive ROOT sessions. The stored ROOT TTree contains the following branches:

• iev (int): Event number.

• neu (int): Neutrino PDG code.

• tgt (int): Nuclear target PDG code (10LZZZAAAI).

• Z (int): Nuclear target Z.

• A (int): Nuclear target A.

• hitnuc (int): Hit nucleon PDG code (not set for coherent, inverse muon decay and ve- elastic
events).

• hitqrk (int): Hit quark PDG code (set for deep-inelastic scattering events only).

• sea (bool): Hit quark is from sea (set for deep-inelastic scattering events only).

• resid (bool): Produced baryon resonance id (set for resonance events only).

• qel (bool): Is it a quasi-elastic scattering event?

• res (bool): Is it a resonanec neutrino-production event?

• dis (bool): Is it a deep-inelastic scattering event?

• coh (bool): Is it a coherent meson production event?

• dfr (bool): Is it a diffractive meson production event?

• imd (bool): Is it an invese muon decay event?

• nuel (bool): Is it a ve- elastic event?

• cc (bool): Is it a CC event?

154 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

• nc (bool): Is it a NC event?

• charm (bool): Produces charm?

• neut_code (int): The equivalent NEUT reaction code (if any).

• nuance_code (int): The equivalent NUANCE reaction code (if any).

• wght (double): Event weight.

• xs (double): Bjorken x (as was generated during the kinematical selection / off-shell kinematics).

• ys (double): Inelasticity y (as was generated during the kinematical selection / off-shell kinematics).

• ts (double): Energy transfer to nucleus (nucleon) at coherent (diffractive) production events (as
was generated during the kinematical selection).

• Q2s (double): Momentum transfer Q2 (as was generated during the kinematical selection / off-shell
kinematics) (in GeV 2).

• Ws (double): Hadronic invariant mass W (as was generated during the kinematical selection /
off-shell kinematics).

• x (double): Bjorken x (as computed from the event record).

• y (double): Inelasticity y (as computed from the event record).

• t (double): Energy transfer to nucleus (nucleon) at coherent (diffractive) production events (as
computed from the event record).

• Q2 (double): Momentum transfer Q2 (as computed from the event record) (in GeV 2).

• W (double): Hadronic invariant mass W (as computed from the event record).

• Ev (double): Incoming neutrino energy (in GeV).

• pxv (double): Incoming neutrino px (in GeV).

• pyv (double): Incoming neutrino py (in GeV).

• pzv (double): Incoming neutrino pz (in GeV).

• En (double): Initial state hit nucleon energy (in GeV).

• pxn (double): Initial state hit nucleon px (in GeV).

• pyn (double): Initial state hit nucleon py (in GeV).

• pzn (double): Initial state hit nucleon pz (in GeV).

• El (double): Final state primary lepton energy (in GeV).

• pxl (double): Final state primary lepton px (in GeV).

• pyl (double): Final state primary lepton py (in GeV).

• pzl (double): Final state primary lepton pz (in GeV).

• nfp (int): Number of final state p and p̄ (after intranuclear rescattering).

9.5. EVENT TREE CONVERSIONS 155

• nfn (int): Number of final state n and n̄.

• nfpip (int): Number of final state π+.

• nfpim (int): Number of final state π−.

• nfpi0 (int): Number of final state π0.

• nfkp (int): Number of final state K+.

• nfkm (int): Number of final state K−.

• nfk0 (int): Number of final state K0 and K̄0.

• nfem (int): Number of final state γ, e−and e+.

• nfother (int): Number of heavier final state hadrons (D+/-,D0,Ds+/-,Lamda,Sigma,Lamda_c,Sigma_c,...).

• nip (int): Number of ‘primary’ (‘primary’ : before intranuclear rescattering) p and p̄.

• nin (int): Number of ‘primary’ n and n̄.

• nipip (int): Number of ‘primary’ π+.

• nipim (int): Number of ‘primary’ π−.

• nipi0 (int): Number of ‘primary’ π0.

• nikp (int): Number of ‘primary’ K+.

• nikm (int): Number of ‘primary’ K−.

• nik0 (int): Number of ‘primary’ K0 and K̄0.

• niem (int): Number of ‘primary’ γ, e−and e+ (eg from nuclear de-excitations or from pre-
intranuked resonance decays).

• niother (int): Number of other ‘primary’ hadron shower particles.

• nf (int): Number of final state particles in hadronic system.

• pdgf (int[kNPmax]): PDG code of kth final state particle in hadronic system.

• Ef (double[kNPmax]): Energy of kth final state particle in hadronic system (in GeV).

• pxf (double[kNPmax]): Px of kth final state particle in hadronic system (in GeV).

• pyf (double[kNPmax]): Py of kth final state particle in hadronic system (in GeV).

• pzf (double[kNPmax]): Pz of kth final state particle in hadronic system (in GeV).

• ni (int): Number of particles in the ‘primary’ hadronic system (‘primary’ : before intranuclear
rescattering).

• pdgi (int[kNPmax]): PDG code of kth particle in ‘primary’ hadronic system.

• Ei (double[kNPmax]): Energy of kth particle in ‘primary’ hadronic system (in GeV).

• pxi (double[kNPmax]): Px of kth particle in ‘primary’ hadronic system (in GeV).

156 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

• pyi (double[kNPmax]): Py of kth particle in ‘primary’ hadronic system (in GeV).

• pzi (double[kNPmax]): Pz of kth particle in ‘primary’ hadronic system (in GeV).

• vtxx (double): Vertex x in detector coord system (in SI units).

• vtxy (double): Vertex y in detector coord system (in SI units).

• vtxx (double): Vertex z in detector coord system (in SI units).

• vtxt (double): Vertex t in detector coord system (in SI units).

• calresp0 (double): An approximate calorimetric response to the generated hadronic vertex actibity,
calculated by summing up: the kinetic energy for generated {π+, π−, p, n}, the energy+mass for
generated {p̄, n̄}, the (e/h)*energy for generated {π0, γ, e−, e+} (with an e/h = 1.3) and the
kinetic energy for any other generated particle.

Using ROOT to plot quantities stored in a ‘gst’ ntuple The ‘gst’ summary ntuples make it
especially easy to plot GENIE information in a ROOT/CINT session. Some examples are given below:

1. To draw a histogram of the final state primary lepton energy for all νµ CC DIS interactions with
an invariant mass W > 3 GeV, then type:
root[0] gst->Draw(“El”,”dis&&cc&&neu==14&&Ws>3”);

2. To draw a histogram of all final state π+ energies in CC RES interactions, then type:
root[0] gst->Draw(“Ef”,”pdgf==211&&res&&cc”);

9.5.2.2 The ‘gxml’ format

The ‘gxml’ format is a GENIE XML-based event format2.

Each event is included within <ghep> </ghep> tags as in:

<ghep np = "{number of particles; int}"
unphysical = "{is it physical?; boolean (T/F)}">

</ghep>

Both information with event-wide scope such as:

<wght> {event weight; double} </wght>
<xsec_evnt> {event cross section; double} </xsec_evnt>
<xsec_kine> {cross section for event kinematics; double} </xsec_kine>

<vx> {vertex x in detector coord system (SI); double} </vx>

2In the format description that follows, the curly braces within tags are to be ‘viewed’ as a single value of the specified
type with the specified semantics. For example ‘{number of particles; int}’ is to be thought of as an integer value describing
a number particles.

9.5. EVENT TREE CONVERSIONS 157

<vy> {vertex y in detector coord system (SI); double} </vy>
<vz> {vertex z in detector coord system (SI); double} </vz>
<vt> {vertex t (SI); double} </vt>

and a full list of the generated particles is included between the <ghep> tags. The information for
each generated particle is expressed as:

<p idx = "{particle index in event record; int}"
type = "{particle type; char (F[ake]/P[article]/N[uleus])}">

<pdg> {pdg code; int} </pdg>
<ist> {status code; int} </ist>

<mother>
<fst> {first mother index; int} </fst>
<lst> {last mother index; int} </lst>

</mother>
<daughter>

<fst> {first daughter index; int} </fst>
<lst> {last daughter index; int} </lst>

</daughter>

<px> {Px in GeV; double} </px>
<py> {Py in GeV; double} </py>
<pz> {Pz in GeV; double} </pz>
<E> {E in GeV; double} </E>
<x> {x in fm; double} </x>
<y> {y in fm; double} </y>
<z> {z in fm; double} </z>
<t> {t; always set to 0} </t>

<ppolar> {polarization, polar angle; in rad} </ppolar>
<pazmth> {polarization, azimuthal angle; in rad} </pazmth>

</p>

9.5.2.3 The ‘rootracker’ formats

The ‘rootracker’ format is a standardized bare-ROOT GENIE event tree format evolved from work on
integrating the GENIE simulations with the nd280, INGRID and 2km detector-level simulations. In
recent versions of GENIE that format was renamed to ‘t2k_rootracker’, with ‘rootracker’ now being a
more generic, stripped-down (excudes pass-through JPARC flux info etc.) version of the T2K variance.

The ‘rootracker’ tree branch names, leaf types and a short description is given below. For the JNUBEAM
branches please consult the corresponding documentation:

• EvtNum (int): Event number

• EvtFlags (TBits*): [GENIE] Event flags.

• EvtCode (TObjString*): [GENIE] A string event code.

158 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

• EvtXSec (double): [GENIE] Event cross section (in 1038cm2).

• EvtDXSec (double): [GENIE] Differential cross section for the selected kinematics in the Kn space
(in 1038cm2/ [Kn]). Typically, Kn is: {Q2} for QEL, {Q2,W} for RES, {x, y} for DIS and COH,
{y} for ve− etc.

• EvtWght (double): [GENIE] Event weight.

• EvtProb (double): [GENIE] Event probability (given cross section, density-weighted path-length,
etc).

• EvtVtx (double[4]): [GENIE] Event vertex position (x, y, z, t) in the detector coordinate system
(in SI).

• StdHepN (int): [GENIE] Number of entries in the particle array.

• StdHepPdg (int): [GENIE] kth particle PDG code.

• StdHepStatus (int): [GENIE] kth particle status code (Generator-specific: For GENIE see GHep-
Status_t).

• StdHepRescat (int): [GENIE] kth particle intranuclear rescattering code (Hadron-transport model
specific: For INTRANUKE/hA see INukeFateHA_t).

• StdHepX4 (double [kNPmax][4]): [GENIE] kth particle 4-position (x, y, z, t) in the hit nucleus
rest frame (in fm)

• StdHepP4 (double [kNPmax][4]): [GENIE] kth particle 4-momentum (px, py, pz, E) in the LAB
frame (in GeV).

• StdHepPolz (double [kNPmax][3]): [GENIE] kth particle polarization vector.

• StdHepFd (int [kNPmax]): [GENIE] kth particle first-daughter index.

• StdHepLd (int [kNPmax]): [GENIE] kth particle last-daughter index.

• StdHepFm (int [kNPmax]): [GENIE] kth particle first-mother index.

• StdHepLm (int [kNPmax]): [GENIE] kth particle last-mother index.

The following branches exist only in the ‘t2k_rootracker’ variance:

• NuParentPdg (int): [JNUBEAM] Parent PDG code.

• NuParentDecMode (int): [JNUBEAM] Parent decay mode.

• NuParentDecP4 (double [4]): [JNUBEAM] Parent 4-momentum at decay.

• NuParentDecX4 (double [4]): [JNUBEAM] Parent 4-position at decay.

• NuParentProP4 (double [4]): [JNUBEAM] Parent 4-momentum at production.

• NuParentProX4 (double [4]): [JNUBEAM] Parent 4-position at production.

• NuParentProNVtx (int): [JNUBEAM] Parent vertex id.

9.5. EVENT TREE CONVERSIONS 159

• G2NeutEvtCode (int): corresponding NEUT reaction code for the GENIE event.

The following branches exist only in the ‘numi_rootracker’ variance3:

• NumiFluxRun (int): [GNUMI] Run number.

• NumiFluxEvtno (int): [GNUMI] Event number (proton on target).

• NumiFluxNdxdz (double): [GNUMI] Neutrino direction slope (dx/dz) for a random decay.

• NumiFluxNdydz (double): [GNUMI] Neutrino direction slope (dy/dz) for a random decay.

• NumiFluxNpz (double): [GNUMI] Neutrino momentum (GeV/c) along z direction (beam axis).

• NumiFluxNenergy (double): [GNUMI] Neutrino energy (GeV/c) for a random decay.

• NumiFluxNdxdznea (double): [GNUMI] Neutrino direction slope (dx/dz) for a decay forced at
center of near detector.

• NumiFluxNdydznea (double): [GNUMI] Neutrino direction slope (dy/dz) for a decay forced at
center of near detector.

• NumiFluxNenergyn (double): [GNUMI] Neutrino energy for a decay forced at center of near
detector.

• NumiFluxNwtnear (double): [GNUMI] Neutrino weight for a decay forced at center of near
detector.

• NumiFluxNdxdzfar (double): [GNUMI] Neutrino direction slope (dx/dz) for a decay forced at
center of far detector.

• NumiFluxNdydzfar (double): [GNUMI] Neutrino direction slope (dy/dz) for a decay forced at
center of far detector.

• NumiFluxNenergyf (double): [GNUMI] Neutrino energy for a decay forced at center of far
detector.

• NumiFluxNwtfar (double): [GNUMI] Neutrino weight for a decay forced at center of far detector.

• NumiFluxNorig (int): [GNUMI] Obsolete

• NumiFluxNdecay (int): [GNUMI] Decay mode that produced neutrino4

3More details on the GNuMI beam simulation outputs can be found at
http://www.hep.utexas.edu/~zarko/wwwgnumi/v19/

4

– 1: K0L -> nue pi- e+

– 2: K0L -> nuebar pi+ e-

– 3: K0L -> numu pi- mu+

– 4: K0L -> numubar pi+ mu-

– 5: K+ -> numu mu+

– 6: K+ -> nue pi0 e+

– 7: K+ -> numu pi0 mu+

– 8: K- -> numubar mu-

160 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

• NumiFluxNtype (int): [GNUMI] Neutrino flavor.

• NumiFluxVx (double): [GNUMI] Position of hadron/muon decay, X coordinate.

• NumiFluxVy (double): [GNUMI] Position of hadron/muon decay, Y coordinate.

• NumiFluxVz (double): [GNUMI] Position of hadron/muon decay, Z coordinate.

• NumiFluxPdpx (double): [GNUMI] Parent momentum at decay point, X - component.

• NumiFluxPdpy (double): [GNUMI] Parent momentum at decay point, Y - component.

• NumiFluxPdpz (double): [GNUMI] Parent momentum at decay point, Z - component.

• NumiFluxPpdxdz (double): [GNUMI] Parent dx/dz direction at production.

• NumiFluxPpdydz (double): [GNUMI] Parent dy/dz direction at production.

• NumiFluxPppz (double): [GNUMI] Parent Z momentum at production.

• NumiFluxPpenergy (double): [GNUMI] Parent energy at production.

• NumiFluxPpmedium (int): [GNUMI] Tracking medium number where parent was produced.

• NumiFluxPtype (int): [GNUMI] Parent particle ID (PDG)

• NumiFluxPpvx (double): [GNUMI] Parent production vertex, X coordinate (cm).

• NumiFluxPpvy (double): [GNUMI] Parent production vertex, Y coordinate (cm).

• NumiFluxPpvz (double): [GNUMI] Parent production vertex, Z coordinate (cm).

• NumiFluxMuparpx (double): [GNUMI] Repeat of information above, but for muon neutrino
parents.

• NumiFluxMuparpy (double): [GNUMI] -//-.

• NumiFluxMuparpz (double): [GNUMI] -//-.

• NumiFluxMupare (double): [GNUMI] -//-.

• NumiFluxNecm (double): [GNUMI] Neutrino energy in COM frame.

• NumiFluxNimpwt (double): [GNUMI] Weight of neutrino parent.

• NumiFluxXpoint (double): [GNUMI] Unused.

• NumiFluxYpoint (double): [GNUMI] Unused.

• NumiFluxZpoint (double): [GNUMI] Unused.

– 9: K- -> nuebar pi0 e-

– 10: K- -> numubar pi0 mu-

– 11: mu+ -> numubar nue e+

– 12: mu- -> numu nuebar e-

– 13: pi+ -> numu mu+

– 14: pi- -> numubar mu-

9.5. EVENT TREE CONVERSIONS 161

• NumiFluxTvx (double): [GNUMI] Exit point of parent particle at the target, X coordinate.

• NumiFluxTvy (double): [GNUMI] Exit point of parent particle at the target, Y coordinate.

• NumiFluxTvz (double): [GNUMI] Exit point of parent particle at the target, Z coordinate.

• NumiFluxTpx (double): [GNUMI] Parent momentum exiting the target, X - component.

• NumiFluxTpy (double): [GNUMI] Parent momentum exiting the target, Y- component.

• NumiFluxTpz (double): [GNUMI] Parent momentum exiting the target, Z - component.

• NumiFluxTptype (double): [GNUMI] Parent particle ID exiting the target.

• NumiFluxTgen (double): [GNUMI] Parent generation in cascade5.

• NumiFluxTgptype (double): [GNUMI] Type of particle that created a particle flying of the target.

• NumiFluxTgppx (double): [GNUMI] Momentum of a particle, that created a particle that flies
off the target (at the interaction point), X - component.

• NumiFluxTgppy (double): [GNUMI] Momentum of a particle, that created a particle that flies
off the target (at the interaction point), Y - component.

• NumiFluxTgppz (double): [GNUMI] Momentum of a particle, that created a particle that flies
off the target (at the interaction point), Z - component.

• NumiFluxTprivx (double): [GNUMI] Primary particle interaction vertex, X coordinate.

• NumiFluxTprivy (double): [GNUMI] Primary particle interaction vertex, Ycoordinate.

• NumiFluxTprivz (double): [GNUMI] Primary particle interaction vertex, Z coordinate.

• NumiFluxBeamx (double): [GNUMI] Primary proton origin, X coordinate.

• NumiFluxBeamy (double): [GNUMI] Primary proton origin, Y coordinate.

• NumiFluxBeamz (double): [GNUMI] Primary proton origin, Z coordinate.

• NumiFluxBeampx (double): [GNUMI] Primary proton momentum, X - component.

• NumiFluxBeampy (double): [GNUMI] Primary proton momentum, Y - component.

• NumiFluxBeampz (double): [GNUMI] Primary proton momentum, Z - component.

9.5.2.4 The ‘tracker’ formats

The ‘tracker’-type format is a legacy event format used by some fortran-based event generators (eg.
NUANCE) and detector-level simulations (eg. SuperK’s Geant3-based SKDETSIM). GENIE includes a
number of ‘tracker’ format variations:

5

– 1: Primary proton,

– 2: Particles produced by proton interaction,

– 3: Particles produced by interactions of the 2’s,

– ...

162 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

* ‘t2k_tracker’:

This is tracker-type format with all the tweaks required for passing GENIE events into the Geant3-based
SuperK detector MC. In the ‘t2k_tracker’ files:

• The begging of event file is marked with a $begin line, while the end of the file is marked by an
$end line.

• Each new event is marked with a $genie line. What follows is a reaction code. Since GENIE
doesn’t use integer reaction codes, it is writting-out the corresponding NEUT reaction code for the
generated GENIE event. This simplifies comparisons between the GENIE and NEUT samples in
SuperK physics analyses.

• The $vertex line is being used to pass the interaction vertex position in the detector coordinate
system in SI units

• The $track lines are being used to pass minimal information on (some) initial / intermediate state
particles (as expected by SKDETSIM) and all final state particles to be tracked by the detector
simulation. Each $track line includes the particle PDG code, its energy, its direction cosines and a
‘status code’ (Not to be confused with GENIE’s status code. The ‘tracker’ file status code expected
by SKDETSIM is ‘-1’ for initial state particles, ‘0’ for stable final states and ‘-2’ for intermediate
particles).

Some further clarifications are in order here:

• K0, K̄0 generated by GENIE are converted to K0
L, K

0
S (as expected by SKDETSIM)

• Since no mother / daughter associations are stored in $track lines only one level of intermediates
can exist (the ‘primary’ hadronic system). Any intermediate particles corresponding to states
evolved from the ‘primary’ hadronic state but before reaching the ‘final state’ are neglected.

• The $track line ordering is the one expected by SKDETSIM with all the primaries, intermediates
and final states grouped together.

The ‘t2k_tracker’ format includes a set of $info lines. They include the exact same information as the
one stored ‘t2k_rootracker’ format files (complete event information generated by GENIE and JPARC
/ JNUBEAM flux pass-through information). This is partially redundant information (some of it was
included in the minimal $track lines) that is not intended for pushing particles through the detector
simulation. The $info lines are read-in by SKDETSIM and are passed-through to the DST stage so that
the identical, full MC information is available for events simulated on both SuperK and the near detector
complex (thus enabling global systematic studies).

A complete event in ‘t2k_tracker’ format looks-like:

$begin

$genie {neut_like_event_type}
$vertex {vtxx} {vtxy} {vtxz} {vtxt}

$track {pdg code} {E} {dcosx} {dcosy} {dcosz} {status}
$track {pdg code} {E} {dcosx} {dcosy} {dcosz} {status}
...

9.6. UNITS 163

$track {pdg code} {E} {dcosx} {dcosy} {dcosz} {status}

$info {event_num} {error_code} {genie_event_type}
$info {event_xsec} {event_kinematics_xsec} {event_weight} {event_probability}
$info {vtxx} {vtxy} {vtxz} {vtxt}

$info {nparticles}
$info {idx}{pdg}{status}{fd}{ld}{fm}{lm}{px}{py}{pz}{E}{x}{y}{z}{t}{polx}{poly}{polz}
$info {idx}{pdg}{status}{fd}{ld}{fm}{lm}{px}{py}{pz}{E}{x}{y}{z}{t}{polx}{poly}{polz}
...
$info {idx}{pdg}{status}{fd}{ld}{fm}{lm}{px}{py}{pz}{E}{x}{y}{z}{t}{polx}{poly}{polz}

$info (jnubeam_parent_pdg) (jnubeam_parent_decay_mode)
$info (jnubeam_dec_px) (jnubeam_dec_py) (jnubeam_dec_pz) (jnubeam_dec_E)
$info (jnubeam_dec_x) (jnubeam_dec_y) (jnubeam_dec_z) (jnubeam_dec_t)
$info (jnubeam_pro_px) (jnubeam_pro_py) (jnubeam_pro_pz) (jnubeam_pro_E)
$info (jnubeam_pro_x) (jnubeam_pro_y) (jnubeam_pro_z) (jnubeam_pro_t)
$info (jnubeam_nvtx)

$end

9.6 Units
GENIE is using the natural system of units (~ = c = 1) so (almost) everything is expressed in [GeV]n.
Notable exceptions are the event vertex (in SI units, in the detector coordinate system) and particle po-
sitions (in fm, in the hit nucleus coordinate system). Additionally, although internally all cross sections
are expressed in the natural system units, values copied to certain files (eg ‘rootracker’- or ‘tracker’-format
files) are converted to 1038cm2 (See the corresponding documentation for these file formats).

GENIE provides an easy way for converting back and forth between its internal, natural system of
units and other units. The conversion factors are included in ‘$GENIE/src/Conventions/Units.h’.

For exampe, in order to convert a cross section value returned by ‘a_function()’ from the natural system
of units to 1038cm2, type:

double xsec = a_function() / (1E-38 * units::cm2);

164 CHAPTER 9. ANALYZING OUTPUT EVENT SAMPLES

Part IV

GENIE Non-Neutrino Event
Generation Modes

165

Chapter 10

Boosted Dark Matter

10.1 Introduction
The implementation of boosted dark matter Monte Carlo has been motivated by several theory stud-
ies [116, 117, 118, 119, 120, 121, 122, 123]. The model considered at the moment is particularly based
on [117]. In that work, it was proposed that a promising future avenue is to look for boosted dark
matter interacting in large volume neutrino detectors, which include ArgoNEUT [124], LArIAT [125],
ICARUS [126], MicroBooNE [127], and, eventually, DUNE [128]. In order to better understand the sen-
sitivity of those detectors to boosted dark matter models, it is essential to have a tool that can generate
Monte Carlo events of interactions in such a detector. This section describes a set of GENIE modules
that would accomplish this goal.

10.2 Model Description

10.2.1 Overview
The current implementation focuses on two models presented in Ref. [117]. The first has a fermionic dark
matter candidate, a Z ′ mediator, and a v0 velocity dependence of the spin-dependent cross-section in the
non-relativistic limit. The Lagrangian for the model can be written as

L = −iχ†Lσ̄
µDµχL − iχ†Rσ̄

µDµχR − iQ†σ̄µDµQ− iuc†σ̄µDµu
c − idc†σ̄µDµd

c, (10.1)

where χL,R for a Dirac dark matter candidate, Q, u, d are standard model quark fields, and Dµ =
∂µ + iQi gZ′ Z

′
µ is the usual covariant derivative containing interactions with the Z ′ with Qi the charge

of the field on which the derivative is acting and gZ′ the gauge coupling. The Z ′ is assumed to get a mass
through spontaneous symmetry breaking and we do not write that non-interacting part of the Lagrangian
above. We choose the charge of the quarks such that QQ = Quc = Qdc = 1 and the charge of the dark
matter such that QL = −QR. Then, all the couplings of the Z ′ are axial and the interactions with the
SM exactly mirror the axial interactions of the neutrino.

The second model has a scalar dark matter candidate, a Z ′ mediator, and a v2 velocity dependence
of the spin-dependent cross-section in the non-relativistic limit. The Lagrangian for the model can be
written as

L ⊃ Dµχ
†Dµχ− iQ†σ̄µDµQ− iuc†σ̄µDµu

c − idc†σ̄µDµd
c, (10.2)

with the same conventions as for the fermionic v0 model. The couplings to the quarks are again chosen to
be axial, so that only the dark matter half of the scattering amplitude changes. This allows us to simply
translate the cross-section from one model to the other.

167

168 CHAPTER 10. BOOSTED DARK MATTER

In both models, assuming a universal coupling to different quark flavors, the phenomenology is com-
pletely determined by just 3 parameters: the dark matter mass, the mediator mass, and the gauge
coupling gZ′ . The implementation uses the mediator mass ratio r = mZ′/mχ rather than the mediator
mass itself to more easily ensure physically interesting values are chosen. The user must further specify
via event generator selection whether the v0 fermionic model or v2 scalar model is used. Further details
on the dark matter models and motivations for boosted dark matter can be found in Ref. [117].

10.2.2 Cross-section Determination
The current implementation of boosted dark matter in GENIE focuses on Elastic and Deep Inelastic
scattering processes, as these processes dominate over much of the phase space. The implementation
of the cross-section calculation closely follows that used by GENIE for neutrino neutral current elastic
scattering.

Elastic scattering: Dark matter elastic scattering follows that of Ref. [33] with the vector form
factors F iV = GiV = 0. The coupling that normalizes the cross-section must also be modified to account
for the mediator coupling and mass, as well as the possibility that the mediator rest energy is smaller
than the momentum transfer. The resulting differential cross-section is given by

dσ

dQ2
=

1

4

g4
Z′

(Q2 +M2
Z′)

2

E2

π (E2 −M2
χ)
B, (10.3)

where E is the dark matter beam energy, Q2 is the squared four-momentum transfer, and

B = G2
A

{
(f2
a + fb + fc + fd), v0 model;

(f2
a − fb + f ′c), v2 model, (10.4)

and

fa = 1− MNτ

E

fb = τ (τ + 1)
M2
N

E2

fc = (2 + τ)
M2
χ

E2

f ′c = fc −
M2
χ

E2

fd = 8M2
χM

2
N τ

2M2
N τ +M2

Z′

M4
Z′ E

2

τ =
1

4

Q2

M2
N

. (10.5)

Here, MN is the target nucleon mass.
Deep inelastic scattering: This process follows the determination in Ref. [129]. The differential

cross-section can be written in the form

dσ

dxdy
= A

5∑
i=1

TiFi, (10.6)

where Fi are hadronic structure functions. All of these pieces are modified from the neutral current forms.
The prefactor A includes the overall coupling and has the form

A =
g4
Z′MN E

π (E2/p2)

1

(Q2 +M2
Z′)

2
. (10.7)

10.3. USAGE 169

The structure function coefficients for the v0 fermionic model are given by

T1 =
1

8
y

(
x y + 3

M2
χ

EMN

)
+ x y2

M2
χ

2M2
Z′

(
1 +

x yMN E

M2
Z′

)
;

T2 =
1

8

(
1− y − x yMN

2E
−
M2
χ

E2

)
+ y2

M2
χ

4M2
Z′

(
1 +

x yMN E

M2
Z′

)
;

T3 = 0;

T4 =
x yM2

χ

4MN E
+ x2 y2

M2
χ

M2
Z′

(
1 +

x yMN E

M2
Z′

)
;

T5 = −y
M2
χ

8MN E
− x y2

M2
χ

2M2
Z′

(
1 +

x yMN E

M2
Z′

)
, (10.8)

where x = Q2/(Q2 +W 2 −M2
N), y = (Q2 +W 2 −M2

N)/(2MNE), and W 2 is the invariant mass squared
of all outgoing hadronic particles. For the v2 scalar model they are given by

T1 = −1

8
y

(
1

2
x y +

M2
χ

EMN

)
;

T2 =
1

8

(
1− y +

1

4
y2

)
;

T3 = T4 = T5 = 0. (10.9)

The structure functions as defined in Ref. [129] and in the GENIE code must also be modified for this
model as they contain isospin-dependent factors and both vector and axion interactions. This modification
is universal for the two classes of models implemented and we use

F2 = (f (v)
u + f (s)

u + fc + f
(v)
d + f

(s)
d + fs) (G2

V +G2
A);

F3 = (f (v)
u + f (s)

u + fc − f (v)
d − f (s)

d − fs) 2GV GA, (10.10)

where fi are the quark PDFs and Gi are given by

GV = GL +GR = 0; (10.11)
GA = GL −GR = −2. (10.12)

10.3 Usage

Three applications are provided to do dark matter scattering event generation. These correspond to cross-
section spline creation, event generation, and event readout. They follow the structure of the neutrino
scattering tools gmkspl, gevgen, and gevdump respectively.

10.3.1 The gmkspl_dm spline generation utility

Name

gmkspl_dm – A GENIE utility for creating cross-section splines for dark matter scattering processes with
a specified target and dark matter parameters. The splines are written in XML format as expected by
the gevgen_dm utility.

170 CHAPTER 10. BOOSTED DARK MATTER

Source

The source code may be found in ‘$GENIE/src/Apps/gMakeSplinesDM.cxx ’.

Synopsis

$ gmkspl_dm -m dm_masses -g zp_couplings <-t target_codes, -f geometry> [-n nknots]
[-e max_energy] [-z med_ratio][<--output-cross-sections | -o> xml_file]
[--input-cross-sections xml_file] [--seed rnd_seed_num] [--event-generator-list list_name]
[--message-thresholds xml_file]

where [] marks optional arguments, and <> marks a list of arguments out of which only one can be selected
at any given time.

Description

The following options are available:

-m Specifies the dark matter masses.

Multiple masses can be specified as a comma separated list.

-g Specifies the mediator gauge coupling.

Multiple couplings can be specified as a comma separated list.

-t Specifies the target PDG codes.

Multiple target PDG codes can be specified as a comma separated list. The PDG2006 conventions
is used (10LZZZAAAI). So, for example, O16 code = 1000080160, Fe56 code = 1000260560. For more
details see Appendix D. Should only be specified if geometry is not specified using -f.

-f Specifies a ROOT file containing a ROOT/GEANT detector geometry description.

Should only be specified if target PDG codes are not specified using -t.

-n Specifies the number of knots per spline.

By default GENIE is using 15 knots per decade of the spline energy range and at least 30 knots overall.

-e Specifies the maximum dark matter energy in the range of each spline.

By default the maximum energy is set to be the declared upper end of the validity range of the event
generation thread responsible for generating the cross section spline.

-z Specifies the ratio of the mediator to dark matter mass.
By default this is taken to be 0.5. Multiple ratios can be specified as a comma separated list.

–output-cross-sections, -o Specifies the name (incl. full path) of an output cross-section XML file.
By default GENIE writes-out the calculated cross section splines in an XML file named ‘xsec_splines.xml ’

created at the current directory.

10.3. USAGE 171

–input-cross-sections Specifies the name (incl. full path) of the output XML file.

An input cross-section file could be specified when it is possible to recycle previous calculations. It is,
sometimes, possible to recycle cross-section calculations for scattering off free nucleons when calculating
nuclear cross-sections.

–seed Specifies the random number seed for the current job.

This setting will only be relevant if MC integration methods are employed for cross-section calculation.

–event-generator-list List of event generators to load.

The list of event generators to load affects the list of processes that can be simulated and, for which,
cross-section calculations need to be calculated by this application. By default, all v0 fermionic dark
matter scattering processes are calculated. A full list of available event generators is given below in the
section about gevgen_dm.

–message-thresholds Specifies the GENIE verbosity level.

The verbosity level is controlled with an XML file allowing users to customize the threshold of each
message stream. See ‘$GENIE/config/Messenger.xml ’ for the XML schema. The ‘Messenger.xml’ file contains
the default thresholds used by GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define,
correspondingly, less and more verbose configurations.

Examples

1. To calculate cross-sections for fermionic dark matter with a mass of 10 GeV, Z ′ coupling of 1, and
mediator mass 5 GeV scattering off Ar40 (PDG code: 1000180400) and build splines with 150 knots
in the energy range up to 100 GeV, type

$ gmkspl_dm -m 10 -g 1 -t 1000180400 -n 150 -e 100

The cross section splines will be saved in an output XML file named ‘xsec_splines.xml ’ (default name).

2. To calculate cross-sections for scalar dark matter with a masses of 10, 20, and 50 GeV, Z ′ cou-
plings of 0.01 and 0.5, and mediator mass 0.2 the dark matter mass scattering off Ar40 (PDG code:
1000180400) and write the output to “mysplines.xml”, type

$ gmkspl_dm -m 10,20,50 -g 0.01,0.5 -z 0.2 -t 1000180400 -o mysplines.xml --event-generator-list
DMv2

10.3.2 The gevgen_dm dark matter event generation utility

Name

gevgen_dm – A GENIE utility for simple dark matter event generation. The application handles event
generation for dark matter scattering off a given target.

172 CHAPTER 10. BOOSTED DARK MATTER

Source

The source code may be found in ‘$GENIE/src/Apps/gEvGenDM.cxx ’.

Synopsis

$ gevgen_dm [-h] [-r run#] -n nev -m dm_mass -g zp_coupling -t target_pdg -e energy [-z med_ratio]
[-f flux] [-w] [-seed random_number_seed] [--cross-section xml_file] [--event-generator-list

list_name]
[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]
[--mc-job-status-refresh-rate rate] [--cache-file root_file]

where [] denotes an optional argument.

Description

The following options are available:

• -h Prints-out help on gevgen_dm syntax and exits.

• -r Specifies the MC run number.

• -n Specifies the number of events to generate.

• -mSpecifies the dark matter mass.

• -gSpecifies the Z ′ gauge coupling.

• -t Specifies the target PDG code(s).

The PDG2006 convention is used (10LZZZAAAI). So, for example, O16 code = 1000080160, Fe56

code = 1000260560. For more details see Appendix D.

Multiple targets (a ‘target mix’) can be specified as a comma-separated list of PDG codes, each
followed by its corresponding weight fraction in brackets as in:
‘code1[fraction1],code2[fraction2],...’.
For example, to use a target mix of 95% O16 and 5% H type:
‘-t 1000080160[0.95],1000010010[0.05]’.

• -e Specifies the dark matter energy or energy range.

For example, specifying ‘-e 1.5’ will instruct gevgen_dm to generate events at 1.5 GeV.

If what follows ‘-e’ is a comma separated pair of values then gevgen_dm will interpret that as an ‘en-
ergy range’. For example, specifying ‘-e 0.5,2.3’ will be interpreted as the [0.5 GeV, 2.3 GeV] range. If
an energy range is specified then gevgen_dm expects the ‘-f’ option to be set as well so as to describe the
energy spectrum of flux dark matter particles over that range (see below).

• -zSpecifies the mediator mass ratio. The default is 0.5.

10.3. USAGE 173

• -f Specifies the dark matter flux spectrum.

This generic event generation driver allows to specify the flux in any one of three simple ways:

– As a ‘function’.
For example, in order to specify a flux that has the x2 + 4e−x functional form, type:
‘-f ‘x*x+4*exp(-x)”

– As a ‘vector file’.
The file should contain 2 columns corresponding to energy (in GeV), flux (in arbitrary units).
For example, in order to specify that the flux is described by the vector file ‘/data/fluxvec.data’,
type:
‘-f /data/fluxvec.data’

– As a ‘1-D histogram (TH1D) in a ROOT file’.
The general syntax is: ‘-f /full/path/file.root,object_name’.
For example, in order to specify that the flux is described by the ‘nue’ TH1D object in ‘/data/flux.root ’,
type:
‘-f /data/flux.root,nue’

• -w Forces generation of weighted events.

This option is relevant only if a dark matter flux is specified via the ‘-f’ option. In this context
‘weighted’ refers to an event generation biasing in selecting an initial state (a flux dark matter and target
pair at a given dark matter energy). Internal weighting schemes for generating event kinematics can still be
enabled independently even if ‘-w’ is not set. Don’t use this option unless you understand what the inter-
nal biasing does and how to analyze the generated sample. The default option is to generated unweighted
events.

• –seed Specifies the random number seed for the current job.

• –cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed dark
matter cross-section spline, for example as generated by gmkspl_dm.

• –event-generator-list Specifies the list of event generators to use in the MC job.

By default, GENIE is loading a list of of tuned and fully-validated generators which allow compre-
hensive dark matter interaction modelling the medium-energy range. Valid settings are the XML
block names appearing in $GENIE/config/EventGeneratorListAssembler.xml ’. For completeness, we list
the available choices here as well:

– DMELv0: Elastic scattering of fermionic dark matter.
– DMELv2: Elastic scattering of scalar dark matter.
– DMDISv0: Deep inelastic scattering of fermionic dark matter.
– DMDISv2: Deep inelastic scattering of scalar dark matter.
– DMv0: Elastic and deep inelastic scattering of fermionic dark matter.
– DMv2: Elastic and deep inelastic scattering of scalar dark matter.
– DM: All dark matter scattering. Not recommended for event generation, but may be useful

for spline creation.

174 CHAPTER 10. BOOSTED DARK MATTER

• –message-thresholds Specifies the GENIE verbosity level.

The verbosity level is controlled with an XML file allowing users to customize the threshold of each
message stream. See ‘$GENIE/config/Messenger.xml ’ for the XML schema. The ‘Messenger.xml’ file con-
tains the default thresholds used by GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’
files define, correspondingly, less and more verbose configurations.

• --unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be
written in the output event file.

By default, all unphysical events are rejected.

• --event-record-print-level Allows users to set the level of information shown when the event record
is printed in the screen.

See GHepRecord::Print() for allowed settings.

• --mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

• --cache-file Allows users to specify a ROOT file so that results of calculation cached throughout
a MC job can be re-used in subsequent MC jobs.

Examples

1. To generate 1000 events for fermionic dark matter with a mass of 10 GeV, Z ′ coupling of 1, and
mediator mass 5 GeV scattering off Ar40 (PDG code: 1000180400) with energy 100 GeV using a
spline ’dm_fermionic_spline.xml’ and write events to ’dm_100GeV.root’, type

$ gevgen_dm -n 1000 -m 10 -g 1 -e 100 -t 1000180400 -o dm_100GeV.root
--cross-sections dm_fermionic_spline.xml

The cross section splines will be saved in an output XML file named ‘xsec_splines.xml ’ (default name).

2. To generate 10000 events for scalar dark matter with a mass of 20 GeV, Z ′ coupling of 0.01, and
mediator mass 0.25 the dark matter mass scattering off Ar40 (PDG code: 1000180400) with en-
ergy 40 GeV and write the output to using a spline ’dm_scalar_spline.xml’ and write events to
’dm_40GeV.root’ , type

$ gevgen_dm -n 10000 -e 40 -m 20 -g 0.01 -t 1000180400 -z 0.25 -o dm_40GeV.root
--cross-sections dm_scalar_spline.xml --event-generator-list DMv2

10.3.3 The gevdump_dm utility

Name

gevdump_dm - A GENIE utility printing-out GENIE GHEP event records from DM events. Specification
of the dark matter and mediator mass is required to add these particles.

Source

The source code for this utility may be found in ‘$GENIE/src/Apps/ gEvDumpDM.cxx’.

10.4. CAVEATS AND OPPORTUNITIES FOR FURTHER IMPROVEMENTS 175

Synopsis

$ gevdump_dm -f filename -m dm_mass -z med_ratio [-n n1[,n2]]

where [] denotes an optional argument.

Description

The following options are available:

• -f Specifies a GENIE GHEP event file.

• -m Specifies the dark matter mass in the events.

• -z Specifies the mediator mass ratio in the events.

• -n Specifies an event number or a range of event numbers. This is an optional argument. By default
all events will be printed-out.

Notes

You can fine-tune the amount of information that gets printed-out by tweaking the ‘GHEPPRINTLEVEL’
environmental variable (see Appendix ??)

Examples

1. To print-out all events from ‘/data/sample.ghep.root ’ which has a dark matter mass of 10 GeV and
a mediator mass ratio of 0.5, type:

$ gevdump -f /data/sample.ghep.root -m 10 -z 0.5

10.4 Caveats and opportunities for further improvements

176 CHAPTER 10. BOOSTED DARK MATTER

Chapter 11

Nucleon decay

11.1 Introduction
Baryon number conservation is a global symmetry of the Standard Model (SM) in which proton (the
lightest baryon) is stable. Within the SM itself, the baryon number is violated by sphaleron (non-
perturbative) processes. The violation of the baryon number conservation is a required condition for
explaining the Baryon Asymmetry of the Universe, and it is predicted by many Grand Unified Theories
(GUT). The search for nucleon decay is a key scientific goal both for the current and future generation
of massive underground neutrino experiments, and present nucleon lifetime limits of the order of 1032 -
1034 years for several decay channels provide stringent constraints on the construction of GUTs.

GENIE simulates several nucleon decay modes given in Tab.11.1. Nucleon decay is simulated in the
same physics framework used for neutrino interactions. Simulation of the two distinct classes of events
shares the same modelling of initial state nuclear environment and intranuclear hadron transport. This
is a key advantage to using nucleon decay simulations in GENIE, since atmospheric neutrino interactions
are a key background to to nucleon decay searches and GENIE offers the opportunity to model both signal
and background in a common physics framework and to consider the effects of correlated systematics.

11.2 Model Description
[TO BE WRITTEN]

11.3 Usage

11.3.1 The gevgen_ndcy event generation application

Name

gevgen_ndcy - A GENIE-based nucleon decay event generation application.

Source and build options

The source code for gevgen_ndcy may be found in
‘$GENIE/src/support/ndcy/EvGen/gNucleonDecayEvGen.cxx’.
To enable it add ‘--enable-nucleon-decay’ during the GENIE build configuration.

177

178 CHAPTER 11. NUCLEON DECAY

ID Decay channel(s) ID Decay channel(s) ID Decay channel(s)
Antilepton + Meson Antilepton + Mesons Antilepton + Photon(s)

1 p→ e+π0, n→ e+π− 23 p→ e+π+π− 42 p→ e+γ
2 p→ µ+π0, n→ µ+π− 24 p→ e+π0π0 43 p→ µ+γ
3 p→ ν̄π+, n→ ν̄π0 25 n→ e+π−π0 44 n→ ν̄γ
4 p→ e+η 26 p→ µ+π+π− 45 p→ e+γγ
5 p→ µ+η 27 p→ µ+π0π0 46 n→ ν̄γγ
6 n→ ν̄η 28 n→ µ+π−π0 Three or more leptons
7 p→ e+ρ0, n→ e+ρ− 29 n→ e+π−K0 49 p→ e+e+e−

8 p→ µ+ρ0, n→ µ+ρ− Lepton + Meson 50 p→ e+µ+µ−

9 p→ ν̄ρ+, n→ ν̄ρ0 30 n→ e−π+ 51 p→ e+ν̄ν
10 p→ e+ω 31 n→ µ−π+ 52 n→ e+e−ν̄
11 p→ µ+ω 32 n→ e−ρ+ 53 n→ µ+e−ν̄
12 n→ ν̄ω 33 n→ µ−ρ+ 54 n→ µ+µ−ν̄
13 p→ e+K0, n→ e+K− 34 n→ e−K+ 55 n→ µ+e+e−

14 p→ e+K0
S 35 n→ µ−K+ 56 n→ µ+µ+µ−

15 p→ e+K0
L Lepton + Mesons 57 p→ µ+ν̄ν

16 p→ µ+K0, n→ µ+ +K− 36 p→ e−π+π+ 58 p→ e−µ+µ+

17 p→ µ+K0
S 37 n→ e−π+π0 59 n→ ν̄ν̄ν

18 p→ µ+K0
L 38 p→ µ−π+π+ 60 n→ ν̄ν̄ν̄νν

19 p→ ν̄K+, n→ ν̄K0 39 n→ µ−π+π0

20 n→ ν̄K0
S 40 p→ e−π+K+

21 p→ e+K?0 41 p→ µ−π+K+

22 p→ ν̄K?+, n→ ν̄K?0

Table 11.1: Nucleon decay modes simulated in GENIE and their corresponding GENIE
channel IDs.

11.3. USAGE 179

Synopsis

$ gevgen_ndcy
-n number_of_events -m nucleon_decay_mode -N decayed_nucleon_code
-g geometry [-t geometry_top_volume_name]
[-L geometry_length_units] [-D geometry_density_units]
[-o output_event_file_prefix] [-r run#]
[--seed random_number_seed] [--message-thresholds xml_file]
[--event-record-print-level level] [--mc-job-status-refresh-rate rate]
[-h]

where [] denotes an optional argument.

Description

The following options are available:

-n Specifies the number of events to generate.

-m Specifies the nucleon decay channel ID. The list of decay channels and the corresponding
ID is given in Tab. 11.1

-N Specifies the decayed nucleon PDG code (p: 2212, n: 2112). This is required to pick the
correct channel for the given decay channel ID (see Tab. 11.1)

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT / Geant4-based geometry description (TGeoManager).

Example:
To use the ROOT detector geometry description stored in the ‘/data/geo/laguna.root ’ file, type:
‘-g /data/geo/laguna.root’

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
The target mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 con-
vention: 10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (aka ‘water’) type:
‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

-t Specifies the input top volume for event generation. This is an optional argument, relevant only
for ROOT-based detector geometry descriptions. By default, it is set to be the ‘master volume’ of the
input geometry resulting in neutrino events being generated over the entire geometry volume. If the ‘-t’

180 CHAPTER 11. NUCLEON DECAY

option is set, event generation will be confined in the specified detector volume. The option can be used
to simulate events at specific sub-detectors.
You can use the ‘-t’ option to switch generation on / off at multiple volumes. For further details, see
similar discussion in the description of other event generation applications (eg. gevgen_t2k).

-L Specifies the input geometry length units. This is an optional argument, relevant only for ROOT-
based detector geometry descriptions. By default, that option is set to ‘mm’. Possible options include:
‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument, relevant only for ROOT-
based detector geometry descriptions. By default, that option is set to ‘g_cm3’. Possible options include:
‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’,...

-o Specifies the output filename prefix. This is an optional argument. It allows you to override the
output event file prefix. In GENIE, the output filename is built as:

‘prefix.run_number.event_tree_format.file_format’ where, in gevgen_hadro, by default, prefix:
‘gntp’ and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the run number. This is an optional argument. By default it is set to ‘0’.

–seed Specifies the random number seed for the current job.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

11.4 Caveats and opportunities for further improvements

Chapter 12

Neutron-Antineutron Oscillation

Searches for n− n̄ oscillation is another experimental avenue to establish the non-conservation of baryon
number and inform viable extensions of the Standard Model (SM). The probability, P , of free n → n̄
transition is P ≈ (t/τn→n̄)2 where τn→n̄ is the oscillation time. Several Beyond the Standard Model
(BSM) theories predict τn→n̄ to be of the order of 1010 seconds.

GENIE simulates several event topologies that may emerge following the annihilation of the n̄from a
nucleus-bound n → n̄ transition, using the same modelling of the initial nuclear state environment and
intranuclear hadron transport as for the neutrino event simulation. The event topologies that can be
generated by GENIE are summarised in Tab. 12. This chapter discusses the simulation of the experi-
mental signature and presents truth-level topological studies, demonstrating the effects that simulation of
various nuclear effects have on the final state. It also describes some approximations made, and suggests
potential extensions. GENIE provides a specialised event generation application for the event topologies
emerging from n− n̄ oscillation an its usage is described in detail.

12.1 Model description

The development of an n − n̄ event generator poses a specific set of challenges; since it is a beyond
Standard Model process that has never been observed, there is no data that can be used as a reference.
Instead, we must use available data that provides the closest approximation, and use physics simulations
to adapt this data as accurately as possible to a signal simulation.

The full n− n̄ interaction can be summarised as a series of stages:

ID Channel ID Channel
1 p+ n̄→ π+ + π0 9 n+ n̄→ 2π0

2 p+ n̄→ π+ + 2π0 10 n+ n̄→ π+ + π− + π0

3 p+ n̄→ π+ + 3π0 11 n+ n̄→ π+ + π− + 2π0

4 p+ n̄→ 2π+ + π− + π0 12 n+ n̄→ π+ + π− + 3π0

5 p+ n̄→ 2π+ + π− + 2π0 13 n+ n̄→ 2π+ + 2π−

6 p+ n̄→ 2π+ + π− + 2ω 14 n+ n̄→ 2π+ + 2π− + π0

7 p+ n̄→ 3π+ + 2π− + π0 15 n+ n̄→ π+ + π− + ω
8 n+ n̄→ π+ + π− 16 n+ n̄→ 2π+ + 2π− + 2π0

Table 12.1: n− n̄ oscillation event modes simulated in GENIE and their corresponding GENIE
IDs.

181

182 CHAPTER 12. NEUTRON-ANTINEUTRON OSCILLATION

• A neutron bound inside the nucleus, with Fermi momentum and binding energy, spontaneously
oscillates into an antineutron.

• The antineutron annihilates with another nucleon, which also has Fermi momentum and binding
energy.

• The products of this decay are produced inside the nucleus, according to some prescribed branching
ratios.

• These decay products propagate through the nucleus — reinteracting with nucleons as they travel,
or decaying — until they escape the nucleus.

The n− n̄ event generator is available in versions 2.12.0 and later of GENIE. The following sections step
through each stage of the simulation process, summarising additions made to the Event Record at each
point.

12.1.1 The initial state
The event generator is designed to take the initial state element and isotope as a user input. This is
specified using the Particle Data Group nuclear code [130], expressed in the form ±10LZZZAAAI, where
L is the total number of strange quarks, ZZZ the total number of protons, AAA the total baryon number,
and I the isomer level (where I = 0 corresponds to the ground state). For instance, for an unexcited
40Ar nucleus, the nuclear PDG code is 1000180400.

A restriction is placed on which nuclei can be provided as an initial state, since it must be included
in GENIE’s PDGLibrary. Since the event generator makes use of GENIE’s nuclear utilities, the user is
limited to those nuclei for which GENIE records this information. Once a valid nucleus is specified, this
nucleus is added to the GENIE event record as the initial state (kIStInitialState), completely at rest.

12.1.2 Simulating the oscillating neutron
Once the initial state nucleus has been selected, the next step is to simulate individual nucleons inside this
nucleus. GENIE does not independently simulate all nucleons inside the nucleus, and so an approximation
must be made. Calling GENIE’s function to provide a nucleon’s Fermi momentum and binding energy
does not account for any nucleons previously simulated. Since this event generator explicitly simulates
only two nucleons — the oscillating neutron and the nucleon it annihilates with — this lack of correlation
is not an issue for medium and large sized nuclei. However, for very small nuclei this approximation is
insufficient, as it can introduce inconsistencies in momentum conservation between individual nucleons
and the nucleus as a whole.

The oscillating neutron’s position inside the nucleus is selected at random based on the density
profile of nucleons within the nucleus, using GENIE’s utils::nuclear::Density(r,A) function. For
nuclei with a baryon number of 20 or greater, GENIE models the nuclear density with a Woods-Saxon
distribution [131],

ρ(r) =
ρ0

1 + e(r−R0)/a
, (12.1)

where r is depth inside the nucleus; R0 = r0A
1
3 is the nuclear radius, with r0 = 1.4 fm in GENIE; ρ0

is usually nuclear density at r = 0, but in GENIE is replaced with a normalisation constant to express
nuclear density as a probability distribution; and a is a distance describing the “surface thickness” of the
nucleus, set to a = 0.54 fm for 40Ar in GENIE.
Similarly, nucleon Fermi momentum and binding energy are provided by the genie::NuclearModelI
class, an interface to whichever nuclear model the user has enabled in GENIE’s configurable user physics

12.1. MODEL DESCRIPTION 183

options. By default, the Bodek-Ritchie Fermi gas model [132] is enabled in GENIE v2.12.0 — al-
though other models are available, such as the local Fermi gas model and the effective spectral function
model [133]. The Bodek-Ritchie model is used for all work discussed in this thesis.

The neutron that undergoes oscillation into an antineutron is added to the GENIE event record as
part of the stable decayed state (kIStDecayedState). By this stage it has already oscillated into an
antineutron, but due to GENIE bookkeeping it must be added to the event record as a neutron. This
has no effect on later stages of simulation.

12.1.3 Simulating the annihilating nucleon

Once the oscillating neutron has been selected, the generator then considers the nucleon with which the
antineutron annihilates. The annihilation nucleon is selected to be either a proton or a neutron, based
on the proton-to-neutron ratio of the initial state nucleus omitting the neutron that has oscillated. For
example, in 40Ar there is an 18/39 chance of annihilating with a proton and a 21/39 chance of annihilating
with a neutron.

The position of this second nucleon is assigned to be identical to the oscillating neutron’s position.
This is a simplifying approximation — a more rigorous approach would be to simulate all nucleons
in the nucleus according to the nuclear density particle and select the closest candidate, then select
the annihilation vertex as a point equidistant between the two. However, since this would yield an
annihilation vertex distribution similar to the oscillating neutron’s position, the position of the second
nucleon is approximated to be identical to that of the oscillating neutron.

As with the oscillating neutron, the annihilation nucleon’s removal energy and Fermi momentum are
simulated using genie::NuclearModelI, and the particle is added to the event record as part of the
stable decayed state (kIStDecayedState).

12.1.4 Simulating the remnant nucleus

With the initial nucleus and two interacting nucleons simulated, the next step is to simulate the remnant
nucleus. This remnant nucleus is assigned the nuclear PDG code of the initial nucleus with the two inter-
acting nucleons subtracted, and its momentum and energy are chosen to conserve energy and momentum
with respect to the two annihilating nucleons. The remnant nucleus is added to the event record as part
of the stable final state (kIStStableFinalState).

12.1.5 Simulating annihilation products

With the initial state nucleus, annihilating nucleons and remnant nucleus simulated, the next step is
to simulate annihilation products. The annihilation vertex is approximated as the position of both
annihilating nucleons.

A Monte Carlo method is used to select a final state based on the branching ratios shown in Table ??,
which originate from a recent Super-Kamiokande n − n̄ search [134]. A particle object is then created
for each of the annihilation products listed in the chosen final state, with the corresponding PDG code
assigned.

The net momentum of the two-nucleon system is calculated, and then the two annihilating nucleons
are Lorentz boosted into this system’s rest frame using ROOT’s TLorentzVector::Boost function. The
total available energy of the two particles in this frame is calculated, and then the ROOT TGenPhaseSpace
class is used to distribute this energy to the annihilation products. This class performs a phase space
decay, assigning each annihilation product with energy and momentum based on the total available
centre-of-mass energy. Finally, these decay particles are Lorentz boosted back into the lab frame, and
added to the event record as hadrons inside the nucleus (kIStHadronInTheNucleus).

184 CHAPTER 12. NEUTRON-ANTINEUTRON OSCILLATION

Table 12.2: Neutron-antineutron oscillation final state branching ratios, as used in Super-Kamiokande’s
2015 search for n − n̄ oscillation [134]. Branching ratios are provided independently for the n̄p and n̄n
annihiliation processes, so each column independently sums to 100%.

Channel n̄p branching ratio Channel n̄n branching ratio
π+π0 1% π+π− 2%
π+2π0 8% 2π0 1.5%
π+3π0 10% π+π−π0 6.5%

2π+π−π0 22% π+π−2π0 11%
2π+π−2π0 36% π+π−3π0 28%
2π+π−2ω 16% 2π+2π− 7%
3π+2π−π0 7% 2π+2π−π0 24%

π+π−ω 10%
2π+2π−2π0 10%

12.1.6 Final state interactions

Before hadrons produced during the nucleon-antineutron annihilation can be detected, they must escape
the nucleus in which n− n̄ oscillation occurred. For heavy nuclei such as 40Ar, hadrons can travel up to
8 fm before escaping the nucleus, and so the probability of reinteracting is high. Final state interactions
(FSI) have a large impact on the final state, and so simulating this step is vital.

The transport of final state hadrons out of the nucleus is handled by GENIE’s INTRANUKE package.
The branching fractions and reinteraction probabilities in this model are tuned to bubble chamber data on
hydrogen and deuterium targets. It uses the free cross section to estimate the likelihood of reinteraction,
defining the mean free path as

λ(E, r) =
1

σhN,tot × ρ(r)
, (12.2)

where σhN,tot is the cross section and ρ(r) the nuclear density; in the model used for this work, cross-
sections are tuned to data primarily from bubble chamber data on hydrogen and deuterium targets. It
also accounts for the formation time of hadrons, which manifests as a ‘free step’ at the start of a hadron’s
lifetime, in which it will not interact.
Hadrons are propagated through the nucleus, until they either reinteract or escape the nucleus. If they
reinteract, the module uses lookup tables from data to move immediately to simulated particles that exit
the nucleus, unlike the full hN cascade model that simulates the interaction products and continues to
propagate them through the nucleus. As a consequence, the hA module is less computationally intensive,
and is less sensitive to uncertainties in the mean free path of pions in the nucleus.

The INTRANUKE module selects hadrons generated in the nucleus, by identifying all particles in the
event record with status kIStHadronInTheNucleus. It then performs hadron transport on all of these
particles, simulates the particles that exit the nucleus, and adds these particles to the event record with
the status (kIStStableFinalState).

12.2 Simulation results

Figure 12.1 shows an example event display of an n− n̄ event simulated by the GENIE event generator.
This event was produced in GENIE and then run through subsequent MicroBooNE simulation stages to
produce this image.

12.2. SIMULATION RESULTS 185

Figure 12.1: An example event display of a simulated n− n̄ event in the MicroBooNE detector. The event
was simulated using the GENIE event generator, and then propagated through the standard MicroBooNE
simulation chain. The event is nn̄ → π+π−3π0; the π+ is absorbed during final state interactions, and
the event contains a short proton track ejected during FSI. Six electromagnetic showers emerge from the
central vertex, as well as a long track produced by a π− and a short track produced by a proton. The
colour scale represents charge deposited on wires, ranging from blue for low charge deposition to red for
high charge deposition.

In order to determine the impact of nuclear effects on n− n̄ final states, several Monte Carlo samples
were produced in varying configurations. The n − n̄ event generator makes use of three nuclear utility
functions provided by GENIE:

• Binding energy

• Fermi momentum of the annihilating nucleons

• FSI that occur as hadrons exit the nucleus

Figures ??, ??, ?? and ?? demonstrate the effects of nuclear simulations in GENIE. In each of these figures,
a distribution produced using default GENIE nuclear effects is compared to the same distribution with
components of the nuclear simulation disabled, as follows:

• FSI disabled, binding energy and Fermi momentum enabled

• FSI and binding energy disabled, Fermi momentum enabled

• FSI and Fermi momentum disabled, binding energy enabled

• FSI, Fermi momentum and binding energy disabled

• (FSI enabled, binding energy and Fermi momentum disabled)

Pion multiplicity in the final state (Figure ??) is heavily influenced by FSI, and is not affected at all by
Fermi momentum or binding energy. The individual pion momentum distribution (Figure ??) is smeared
towards lower momenta by FSI, and shifted to the left by binding energy. A small peak around 900 MeV
in momentum is visible when Fermi momentum is disabled, corresponding to the two-body final states
in which each pion inherits half of the invariant mass from the annihilation.

The invariant mass is calculated as

M =
√∑

E2
i − |

∑
~pi|2 , (12.3)

where the i index refers to pions in the final state, each of which has energy Ei and momentum ~pi.
FSI smear the invariant mass (Figure ??) down from ∼ 2 GeV to lower energies. A small peak is visible
around the mass of a single pion, corresponding to events where all but one pions are absorbed during
FSI. As with pion momentum, binding energy introduces a characteristic shift to lower invariant mass,
and Fermi moemntum smears the distribution by ∼ 100 MeV.

The total event net momentum is defined as the absolute magnitude of a vector sum of all final state
pions. The total event net momentum distribution (Figure ??) is smeared to higher momenta by both
FSI and Fermi momentum; the impact of Fermi momentum is more apparent in this distribution than
in individual pion momentum or invariant mass. Net momentum is not affected by the simulation of
binding energy.

186 CHAPTER 12. NEUTRON-ANTINEUTRON OSCILLATION

12.2.1 Super-Kamiokande comparison

The n − n̄ analysis published by the Super-Kamiokande collaboration [134] describes the tools used
to simulate the process. For the signal simulation, they use an event generator designed by the IMB
collaboration to search for n− n̄ oscillation in Oxygen. The pion multiplicities and momenta produced by
the GENIE event generator were compared to the Super-Kamiokande simulation, as shown in Table 12.3,
as were the branching ratios for various FSI processes, as shown in Table 12.4.

GENIE predicts a much lower final state pion multiplicity than Super-Kamiokande’s event generator
in 16O (Table 12.3), and as a result the average pion momentum is larger. This is due to GENIE’s
simulation of final state interactions predicting a higher probability of reinteraction. As demonstrated
in Table 12.4, GENIE predicts a 34% probability of a final state particle escaping the nucleus without
reinteracting, compared to 49% in Super-Kamiokande.

Table 12.3: Comparison of pion multiplicities and momenta between between Super-Kamiokande simula-
tions in 16O and GENIE n− n̄ simulations in both 16O and 40Ar. The multiplicities and momenta quoted
for Super-Kamiokande come from [134]. A 100,000 event 16O sample was generated using the GENIE
event generator, to allow direct comparison with Super-Kamiokande values. Also provided are the same
values for a 1,000,000 event GENIE sample generated in 40Ar.

SuperK GENIE (16O) GENIE (16Ar)
π multiplicity 3.5 2.37 2.94
π± multiplicity 2.2 1.57 1.96

π± mean mom. [MeV] 310 372 344
π± RMS mom. [MeV] 190 190 190

Table 12.4: Comparison of branching fractions for various FSI processes experienced by intermediate
state pions between Super-Kamiokande and GENIE n− n̄ event generators. The branching ratios quoted
for Super-Kamiokande come from [134], while the corresponding values for GENIE come from the same
16O and 40Ar samples described in Table 12.3.

SuperK GENIE (16O) GENIE (16Ar)
No FSI 49% 34.0% 15.6%

Absorption 24% 18.8% 24.0%
Nucleon interaction 3% 4.2% 5.3%

Scattering 24% 43.1% 55.1%

12.3 Discussion

12.3.1 Branching ratio corrections

The annihilation branching ratios effectively used within the GENIE event generator are not identical
to the branching ratios published by previous n − n̄ searches, shown in Table ??. These ratios are not
explicitly modified, but it is sometimes necessary to reselect a final state during simulation.

Reselecting the final state is necessary due to event kinematics in one final state specifically —
n̄p → 2π+π−2ω. The branching ratios, which are derived from the annihilation of ‘at-rest’ antiprotons
on deuterium targets, claim this final state occurs in 16% of n̄p annihilations. However, the total mass
energy of this final state is 1984 MeV, 106 MeV greater than the mass energy in the initial state. For the

12.3. DISCUSSION 187

40Ar nucleus, it is highly unlikely that the centre-of-mass energy available due to Fermi momentum of
the two nucleons is large enough to account for both the binding energy and this mass difference.

When there is not enough available energy to perform the annihilation into this final state, the
generator will select a different final state, using the same branching ratios. As a consequence, this final
state is very heavily suppressed — the branching ratio falls from 16% to 0.003%, while the branching
ratios for all other final states are scaled up proportionally. The effective branching ratios, including
dynamic modifications due to event kinematics, are presented in Table 12.5.

This discrepancy occurs because ‘at-rest’ antiproton annihilation data is measured using low-energy
antiprotons, which are not truly at rest. The data sets from which branching ratios are derived do not
explicitly state their definition of ‘at-rest’, though in the equivalent data sets for pn annihilation data,
‘at-rest’ is defined by antiproton momenta as high as 250 MeV, sufficient to produce the final state in
question.

Table 12.5: Neutron-antineutron oscillation final state branching ratios generated by the GENIE event
generator, including the dynamic scaling-down of final states suppressed by event kinematics.

n̄+ p n̄+ n

π+π0 1.2% π+π− 2.0%
π+2π0 9.5% 2π0 1.5%
π+3π0 11.9% π+π−π0 6.5%

2π+π−π0 26.2% π+π−2π0 11.0%
2π+π−2π0 42.8% π+π−3π0 28.0%
2π+π−2ω 0.003% 2π+2π− 7.1%
3π+2π−π0 8.4% 2π+2π−π0 24.0%

π+π−ω 10.0%
2π+2π−2π0 10.0%

12.3.2 Validating the phase space approximation

As discussed in Section 12.1.5, the process of dividing out energy produced in the annihilation between
final state particles is performed via a phase space approximation. This method does not model the
underlying physics of each final state, such as correlations in energy and direction of final state products
caused by intermediate states. Due to the high probability that final state particles will reinteract before
exiting the nucleus, resulting in a change in energy and direction, absorption, and/or the production of
new particles, most small modifications to final state particle kinematics caused by detailed modelling of
intermediate states immediately after annihilation will be lost by the time these particles exit the nucleus.
Based on this assumption, the phase space decay is taken to be an adequate method for distributing energy
and momentum among final state particles.

A study was performed to test the validity of this assumption, using the final state n̄n → π+π−π0.
Events were generated in GENIE without final state interactions enabled, in order to compare directly
with antiproton annihilation data on deuterium. Although the GENIE generator performs a phase space
decay immediately from the two nucleons to the three-pion final state, a review of antiproton annihilation
data (from which annihilation branching ratios are derived) instead claims that 55% of annihilations
occur via the intermediate state n̄n → πρ → 3π. The ‘dipion mass’ (invariant mass of each two-pion
combination) shows a peak at 770 MeV, the mass of the ρ meson, which is not modelled at all by the
phase space approximation in GENIE. A comparison is shown in Figure ??.

Modifications were made to the GENIE event generator to make the dipion mass distribution more
closely resemble the data. In accordance with antiproton scattering data [135], a phase space decay from

188 CHAPTER 12. NEUTRON-ANTINEUTRON OSCILLATION

the initial to final state is performed 45% of the time. In the remainder of events, a phase space decay is
performed into the intermediate πρ final state, followed by a second phase space decay when the ρ decays
into two pions. Gaussian smearing is applied to the modified GENIE distribution to account for detector
uncertainties, and is compared directly with data in Figure ??.

Event samples from both the original and modified GENIE generators are generated, and the dip-
ion mass and pion momentum distributions of final state particles are compared both before and after
final state interactions. The distributions before FSI are displayed in Figure ??, and the corresponding
distributions after FSI are displayed in Figure ??.

As shown in Figures ?? and ??, the considerable difference in dipion mass distributions before FSI is
drastically reduced with the addition of FSI. The mass peak around 770 MeV, which appears as a large
δ function in the dipion mass distribution in the modified generator before FSI, is reduced to a small
excess after FSI. The pion momentum distributions are very similar both before and after FSI, since the
intermediate state has a greater effect on correlated pairs of pions than on any individual pion. Based
on this study, the phase space approximation without any modelling of intermediate states is taken to be
sufficiently accurate for 40Ar, given that any fine structure modelled in intermediate states is lost in FSI
regardless.

12.4 Usage

12.4.1 The gevgen_nnbarosc event generation application
Name

gevgen_nnbarosc - A GENIE-based n− n̄ oscillation event generation application.

Source and build options

The source code for gevgen_nnbarosc may be found in
‘$GENIE/src/support/ndcy/EvGen/gNNBarOscEvGen.cxx’.
To enable it add ‘--enable-nnbar-oscillation’ during the GENIE build configuration.

Synopsis

$ gevgen_nnbarosc
-n number_of_events -m nucleon_decay_mode
-g geometry [-t geometry_top_volume_name]
[-L geometry_length_units] [-D geometry_density_units]
[-o output_event_file_prefix] [-r run#]
[--seed random_number_seed] [--message-thresholds xml_file]
[--event-record-print-level level] [--mc-job-status-refresh-rate rate]
[-h]

where [] denotes an optional argument.

Description

The following options are available:

-n Specifies the number of events to generate.

-m Specifies the n − n̄ channel ID. The list of decay channels and the corresponding ID is given

12.4. USAGE 189

in Tab. 12

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT / Geant4-based geometry description (TGeoManager).

Example:
To use the ROOT detector geometry description stored in the ‘/data/geo/laguna.root ’ file, type:
‘-g /data/geo/laguna.root’

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
The target mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 con-
vention: 10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (aka ‘water’) type:
‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

-t Specifies the input top volume for event generation. This is an optional argument, relevant only
for ROOT-based detector geometry descriptions. By default, it is set to be the ‘master volume’ of the
input geometry resulting in neutrino events being generated over the entire geometry volume. If the ‘-t’
option is set, event generation will be confined in the specified detector volume. The option can be used
to simulate events at specific sub-detectors.
You can use the ‘-t’ option to switch generation on / off at multiple volumes. For further details, see
similar discussion in the description of other event generation applications (eg. gevgen_t2k).

-L Specifies the input geometry length units. This is an optional argument, relevant only for ROOT-
based detector geometry descriptions. By default, that option is set to ‘mm’. Possible options include:
‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument, relevant only for ROOT-
based detector geometry descriptions. By default, that option is set to ‘g_cm3’. Possible options include:
‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’,...

-o Specifies the output filename prefix. This is an optional argument. It allows you to override the
output event file prefix. In GENIE, the output filename is built as:

‘prefix.run_number.event_tree_format.file_format’ where, in gevgen_hadro, by default, prefix:
‘gntp’ and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the run number. This is an optional argument. By default it is set to ‘0’.

–seed Specifies the random number seed for the current job.

190 CHAPTER 12. NEUTRON-ANTINEUTRON OSCILLATION

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

12.5 Future work

12.5.1 Crystal Barrel data and new branching ratios
Since the development of this event generator, a recent PhD thesis [136] has produced an updated list
of n − n̄ oscillation final states. It takes data from the Crystal Barrel spectrometer and ASTERIX at
LEAR, which have measured many antiproton annihilation channels in greater detail [137, 138, 139].

These improved final states from [136] are reproduced in Table 12.6. These new branching fractions
are in good agreement with previous sets of antiproton annihilation data summarised above, especially
for channels such as π+π−.

The author of this event generator intends to update the GENIE event generator to use these newer,
more accurate branching ratios at some point in the future. Alternatively, any users of this event generator
who wish to implement these branching ratios themselves are encouraged to do so.

12.6 Conclusions
The GENIE neutron-antineutron oscillation module provides a simple, robust method of simulating bound
neutron-antineutron oscillation. The simulation of this process is vital for any searches for neutron-
antineutron oscillation inside a relatively heavy nucleus, and this module is the first open-source, publicly
available n− n̄ event generator. Due to the flexibility of the generator, it facilitates not only the search for
n−n̄ in DUNE, but in any mid-to-heavy nucleus. Detailed modelling of intermediate states is shown to be
unnecessary, at least for heavier nuclei, as all resulting features are washed out by final state interactions.

12.6. CONCLUSIONS 191

Table 12.6: Updated n− n̄ oscillation final state branching ratios, as reproduced from [136] and originally
derived from Crystal Barrel and ASTERIX data [137, 138, 139]. n− n̄ branching ratios consider n̄p and
n̄n annihilation independently, so each column independently sums to 100%. Uncertainties on branching
fractions are not provided, but in original data sources they are typically in the 10-20% [138, 135].

n̄p n̄n
Channel Branching ratio Channel Branching ratio

2π0 0.06% π+π0 0.1%
3π0 0.8% π+2π0 0.7%
4π0 0.3% π+3π0 14.8%
5π0 1.0% π+4π0 1.4%
6π0 0.01% 2π+π− 2.0%
7π0 0.1% 2π+π−π0 17.0%
π+π− 0.3% 2π+π−2π0 10.8%
π+π−π0 1.6% 2π+π−3π0 30.1%
π+π−2π0 13.0% 3π+2π− 5.5%
π+π−3π0 11.2% 3π+2π−π0 2.3%
π+π−4π0 3.3%
π+π−5π0 1.4%
2π+2π− 6.0%

2π+2π−π0 13.5%
2π+2π−2π0 16.6%
2π+2π−3π0 0.6%

3π+3π− 2.2%
3π+3π−π0 2.0%

192 CHAPTER 12. NEUTRON-ANTINEUTRON OSCILLATION

Chapter 13

Hadron (and Photon) - Nucleus
Scattering

13.1 Model description

13.2 Usage

13.2.1 The gevgen_hadron event generation application

Name

gevgen_hadron - A GENIE hadron+nucleus event generation application.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/ gEvGenHadronNucleus.cxx’.

Synopsis

$ gevgen_hadron
[-n number_of_events] -p probe_pdg_code -t target_pdg_code
-k kinetic_energy [-m mode]
[-f flux] [-o output_file_prefix][-r run#]
[-seed random_number_seed] [--message-thresholds xml_file]
[--event-record-print-level level] [--mc-job-status-refresh-rate rate]

Description

The following options are available:

-n Specifies the number of events to generate. This is an optional argument. By default it is
set to ‘10000’.

-p Specifies the incoming hadron PDG code. The choice is limited to the hadrons that can
be handled by the intranuclear cascade code that is invoked by the application (choice made via the -m

193

194 CHAPTER 13. HADRON (AND PHOTON) - NUCLEUS SCATTERING

option).

-t Specifies the nuclear target PDG code. As usual the PDG2006 convention is used (10LZZZA-
AAI). So, for example, O16 code = 1000080160, Fe56 code = 1000260560. For more details see Appendix
D.

-k Specifies the incoming hadron’s kinetic energy (range). This option can be use to specify
either a single kinetic energy value (eg ‘-k 0.5’) or a kinetic energy range as a comma-separated set of
numbers (eg ‘-k 0.1,1.2’). The input values are taken to be in GeV. If no flux is specified then hadrons
will be fired towards the nucleus with a uniform kinetic energy distribution within the specified range. If
a kinetic energy spectrum is supplied then the hadron kinetic energies will be generated using the input
spectrum within the specified range.

-f Specifies the incoming hadron’s kinetic energy spectrum. This is an optional argument.
It can be either: a) a function, eg ‘x*x+4*exp(-x)’, or b) a text file containing 2 columns corresponding
to (kinetic energy {GeV}, ’flux’). If you do specify a flux then you need to specify a kinetic energy range
(not kust a single value).

-o Specifies the output filename prefix. This is an optional argument. It allows you to override the
output event file prefix. In GENIE, the output filename is built as:

‘prefix.run_number.event_tree_format.file_format’ where, in gevgen_hadro, by default, prefix:
‘gntp’ and event_tree_format: ‘ghep’ and file_format: ‘root’.

-m Specifies which intranuclear cascade model to use. This is an optional argument. Possi-
ble options are ‘hA’ (for the INTRANUKE hA model), ‘hN’ (for the INTRANUKE hN model). By
default it is set to ‘hA’.

-r Specifies the run number. This is an optional argument. By default it is set to ‘0’.

–seed Specifies the random number seed for the current job.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

Examples

1. Generate 100k π+ + Fe56 events with a π+ kinetic energy of 165 MeV. Use seed number 10010.

$ gevgen_hadron -n 100000 -p 211 -t 1000260560 -k 0.165 --seed 10010

13.2. USAGE 195

2. Generate 100k π++Fe56 events with the π+ kinetic energy distributed uniformly in the [165 MeV,
1200 MeV] range. Use default seed number.

$ gevgen_hadron -n 100000 -p 211 -t 1000260560 -k 0.165,1.200

3. Generate 100k π++Fe56 events with the π+ kinetic energy distributed as f(KE) = 1/KE in the [165
MeV, 1200 MeV] range. Use seed number 10010 and production-mode verbosity level (all message
thresholds set to warning).

$ gevgen_hadron -n 100000 -p 211 -t 1000260560 -k 0.165,1.200 -f ’1/x’
--seed 10010 --message-thresholds Messenger_laconic.xml

196 CHAPTER 13. HADRON (AND PHOTON) - NUCLEUS SCATTERING

Chapter 14

Charged Lepton - Nucleus Scattering

[to be added in future revision]

197

198 CHAPTER 14. CHARGED LEPTON - NUCLEUS SCATTERING

Part V

Using the GENIE Comparisons and
Tuning Products

199

Chapter 15

Model Characterization using the
GENIE Comparisons

15.1 Introduction
This chapter provides a complete description of the usage of the GENIE Comparisons product to perform
quantitative data-driven characterization of a GENIE comprehensive model. The software framework of
the GENIE Comparisons product, its curated data archives and its implemented data/MC comparisons
were described in detail in Sec. 5. This chapter focusses on the mechanics of producing the necessary
GENIE event files and preparing the input XML files that seed the GENIE Comparisons applications.

201

202 CHAPTER 15. MODEL CHARACTERIZATION USING THE GENIE COMPARISONS

Chapter 16

Model Fits using the GENIE Tuning
and Professor

16.1 Introduction
This chapter provides a complete description of the usage of the GENIE Tuning product and Professor to
perform GENIE comprehensive model fits for the estimation of best-fit parameters and the evaluation of
parameter errors and their correlation. The software framework of the GENIE Tuning product and the
GENIE/Professor interface were described in detail in Sec. 6. This chapter focusses on the mechanics of
producing a GENIE tune using Professor.

203

204 CHAPTER 16. MODEL FITS USING THE GENIE TUNING AND PROFESSOR

Chapter 17

Supporting Tools / Event Reweighting

17.1 Introduction and important caveats

This chapter describes the strategies for propagating a partial list of neutrino interaction uncertainties
that have been implemented in the GENIE ReWeight package. The reweighting schemes described here
are tied to the some of the home-grown models and some of the physics choices made in GENIE. As
GENIE evolves, by including better-motivated theoretical models and by integrating new data in its ef-
fective models1, updates may be required to the reweightng schemes. Some of the schemes discussed here
and their implementation are particularly easy to go out sync with the corresponding simulation models
and they may fail in subtle yet important ways. It should also be emphasised that the ReWeight pack-
age does not provide the full systematic uncertainty of any GENIE comprehensive model .
GENIE tunes may use event reweighting where it is convenient and safe to do so but, mainly, they are
performed using brute force and relying on the Professor tuning tool to ‘to reduce the exponentially ex-
pensive process of brute-force tuning to a scaling closer to a power law in the number of parameters, while
allowing for massive parallelisation and systematically improving the scan results by use of a determin-
istic parameterisation of the generator’s response to changes in the steering parameters’ [140, 141]. An
extension of the GENIE ReWeight tool to include reweighting functions for nominally non-reweightable
systematic uncertainties, relying on Professor-style parameterization of the GENIE response to these
systematics uncertainties built from MC runs, is being considered but it was not yet available for public
release at the time of updating this document.

17.2 Formulation of problem

For each neutrino-generator input physics quantity P , whose uncertainty is taken into account in this
work, we introduce a systematic parameter2 xP . Tweaking this systematic parameter modifies the cor-
responding physics parameter P as follows:

P → P ′ = P (1 + xP ∗
δP

P
) (17.1)

where δP is the estimated standard deviation of P . Setting the systematic parameter to zero corresponds
to using the nominal value of the physics parameter. Tweaking the systematic parameter by ±1 modifies

1The GENIE development roadmap is outlined at: http://releases.genie-mc.org
2The terms ‘systematic parameter’, ‘nuisance parameter’, ‘tweaking dial’ may be used interchangeably in this paper and

our presentations/discussions of this work.

205

206 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

the corresponding physics quantity P by ±δP . The quantity P may be a single configurable parameter
(eg. CCQE axial mass), or it may be a simple function of a kinematical parameter (eg. a hadron-nucleus
cross-section as a function of the hadron energy), or, more generally, it may be any nominal MC prediction,
which can not be easily expressed analytically or tabulated. For that reason, it is always preferable to
formulate the problem (eg. oscillation fits in presence of neutrino-interaction nuisance parameters) in
terms of xP . The purpose then of a reweighting strategy, as implemented in GENIE, is to evaluate an
event weight as a function of xP .

17.3 List (partial) of reweightable systematic parameters in GE-
NIE

A number of neutrino cross section systematics are considered in this chapter, and a complete list of
these is given in Tab. 17.1. The dominant systematics, for neutrino interactions in the few-GeV energy
range, include the axial mass for charged-current quasi-elastic scattering and the axial and vector masses
for both charged-current and neutral-current resonance neutrino production. Uncertainties in nuclear
effects (Pauli supression) in charged-current quasi-elastic reactions are taken into account by modifying
the Fermi momentum level kF . Uncertainties in the choice of vector form factors (dipole vs BBA2005) for
charged-current quasi-elastic reactions are also taken into account. Charged-current and neutral-current
coherent pion production uncertainties are taken into account by modifying the corresponding axial mass
and the nuclear size parameter R0, which controls the pion absorption factor in the Rein-Sehgal (RS)
model. Uncertainties in the level of the non-resonance background are considered for all neutrino charged-
current and neutral-current 1π- and 2π-production channels. Finally, in order to consider uncertainties
in charged-current and neutral-current deep inelastic scattering, the most important parameters of the
Bodek-Yang (BY) model are taken into account. These BY uncertainties are considered only for events
in the ‘safe’ deep-inelastic kinematic regime (Q2 > 1 GeV 2/c2 and W > 2 GeV/c2) to avoid double
counting uncertainties in the resonance / transition region that have already been taken into account.

We consider a number of uncertainties in neutrino-induced hadronization and resonance decays. We
include uncertainties in the assignment of pion kinematics in Nπ hadronic states generated by the
Andreopoulos-Gallagher-Kehayias-Yang (AGKY) GENIE hadronization model, as well as uncertainties
in the in-medium modifications of the hadronization process. Uncertainties in the pion angular distribu-
tion in ∆→ πN decays and uncertainties in certain resonance-decay branching ratios are also taken into
account. The complete list is given in Tab. 17.2.

Finally, we consider two kinds of uncertainties affecting the INTRANUKE (hA) intranuclear hadron
transport model: Uncertainties in the total rescattering probability (mean free path) for hadrons within
the target nucleus and uncertainties in the conditional probability of each hadron rescattering mode
(elastic, inelastic, charge exchange, pion production and absorption / multi-nucleon knock-out), given
that a rescattering did occur. These physics uncertainties are considered separately for nucleons and
pions. The complete list of systematic parameters is given in Tab. 17.3.

17.3. LIST (PARTIAL) OF REWEIGHTABLE SYSTEMATIC PARAMETERS IN GENIE 207

xP Description of P δP/P

xMNCEL
A

Axial mass for NC elastic ±25%

xηNCEL Strange axial form factor η for NC elastic ±30%

xMCCQE
A

Axial mass for CC quasi-elastic -15% +25%

xCCQE−Norm Normalization factor for CCQE

xCCQE−PauliSup CCQE Pauli suppression (via changes in Fermi level kF) ±35%

xCCQE−V ecFF Choice of CCQE vector form factors (BBA05 ↔ Dipole) -

xCCRES−Norm Normalization factor for CC resonance neutrino production

xNCRES−Norm Normalization factor for NC resonance neutrino production

xMCCRES
A

Axial mass for CC resonance neutrino production ±20%

xMCCRES
V

Vector mass for CC resonance neutrino production ±10%

xMNCRES
A

Axial mass for NC resonance neutrino production ±20%

xMNCRES
V

Vector mass for NC resonance neutrino production ±10%

xMCOHpi
A

Axial mass for CC and NC coherent pion production ±50%

xRCOHpi0
Nuclear size param. controlling π absorption in RS model ±10%

xRνp,CC1π
bkg

Non-resonance bkg in νp CC1π reactions ±50%

xRνp,CC2π
bkg

Non-resonance bkg in νp CC2π reactions ±50%

xRνn,CC1π
bkg

Non-resonance bkg in νn CC1π reactions ±50%

xRνn,CC2π
bkg

Non-resonance bkg in νn CC2π reactions ±50%

xRνp,NC1π
bkg

Non-resonance bkg in νp NC1π reactions ±50%

xRνp,NC2π
bkg

Non-resonance bkg in νp NC2π reactions ±50%

xRνn,NC1π
bkg

Non-resonance bkg in νn NC1π reactions ±50%

xRνn,NC2π
bkg

Non-resonance bkg in νn NC2π reactions ±50%

xABYHT AHT higher-twist param in BY model scaling variable ξw ±25%

xBBYHT BHT higher-twist param in BY model scaling variable ξw ±25%

xCBYV 1u
CV 1u u valence GRV98 PDF correction param in BY model ±30%

xCBYV 2u
CV 2u u valence GRV98 PDF correction param in BY model ±40%

xCCDIS Inclusive CC cross-section normalization factor

xCCν̄/ν ν̄/ν CC ratio

xDIS−NuclMod DIS nuclear modification (shadowing, anti-shadowing, EMC)

Table 17.1: Neutrino interaction cross-section systematic parameters considered in GENIE. For some of
the above parameters there are two reweighting implementations: One which includes the full effect of
the systematic (shape + normalization) and one which includes only its effect on the shape of observable
distributions (maintains normalization). Note that some systematics have overlapping effects so care is
needed to avoid double counting.

208 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

xP Description of P δP/P

xpT1π
AGKY Pion transverse momentum (pT) for Nπ states in AGKY -

xxF1π
AGKY Pion Feynman x (xF) for Nπ states in AGKY -

xfz Hadron formation zone ±50%

x∆→πN
θπ

Pion angular distribution in ∆→ πN (isotropic ↔ RS) -

xR→X+1γ
BR Branching ratio for radiative resonance decays ±50%

xR→X+1η
BR Branching ratio for single-η resonance decays ±50%

Table 17.2: Neutrino-induced hadronization and resonance-decay systematic parameters considered in
this work.

xP Description of P δP/P

xNmfp Nucleon mean free path (total rescattering probability) ±20%

xNcex Nucleon charge exchange probability ±50%

xNel Nucleon elastic reaction probability ±30%

xNinel Nucleon inelastic reaction probability ±40%

xNabs Nucleon absorption probability ±20%

xNπ Nucleon π-production probability ±20%

xπmfp π mean free path (total rescattering probability) ±20%

xπcex π charge exchange probability ±50%

xπel π elastic reaction probability ±10%

xπinel π inelastic reaction probability ±40%

xπabs π absorption probability ±20%

xππ π π-production probability ±20%

Table 17.3: Intranuclear hadron transport systematic parameters considered in this work.

17.4. PROPAGATING NEUTRINO-CROSS SECTION UNCERTAINTIES 209

17.4 Propagating neutrino-cross section uncertainties

Unlike the propagation of hadronic simulation uncertainties (to be discussed later), which is challenging
as the probability for a generated multi-particle configuration is difficult to calculate analytically, the
propagation of neutrino interaction cross-section modelling uncertainties is relatively straightforward
using a generic reweighing scheme less strongly tied to the details of the physics modeling. Cross section
reweighing is modifying the neutrino interaction probability directly and, therefore the considerations on
unitarity conservation developed in the hadron transport reweighing section are not relevant here.

The neutrino event weight, wevtσ , to account for changes in physics parameters controlling neutrino
cross sections is calculated as

wevtσ = (dnσ′ν/dK
n)/(dnσν/dK

n) (17.2)

where dnσ/dKn is the nominal differential cross section for the process at hand, dnσ′/dKn is the differ-
ential cross section computed using the modified input physics parameters. The differential cross section
is evaluated at the kinematical phase space {Kn}3. A critical point in implementing the cross section
reweighing scheme for scattering off nuclear targets, is that the correct off-shell kinematics, as used in
the original simulation, must be recreated before evaluating the differential cross sections. This is trivial
as long as detailed information for the bound nucleon target has been maintained by the simulation.

)
Bjorken

(x
10

log

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

)
2

/1
G

e
V

2
(Q

1
0

lo
g

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

-410

-3
10

-210

W
 =

 1
.0

 G
eV

W
 =

 1
.2

 G
eV

W
 =

 2
.0

 G
eV

2
 = 1 GeV

2
Q

Figure 17.1: JPARC neutrino beam kinematic coverage at the nd280. Cross section uncertainties of
different magnitude are appropriate for different parts of the kinematic phase space.

3In GENIE, typically, theKn kinematical phase space is {Q2} for CC quasi-elastic and NC elastic, {Q2,W} for resonance
neutrino production, {x, y} for deep inelastic scattering and coherent or diffractive meson production, {y} for νe− elastic
scattering or inverse muon decay where Q2 is the momentum transfer, W the hadronic invariant mass, x is Bjorken scaling
variable and y the inelasticity. The choice is not significant. The differential cross section calculation can be mapped from
the Kn to the Kn′ kinematic phase space through the Jacobian for the Kn → Kn′ transformation.

210 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

W (GeV)
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

3
10×

Figure 17.2: True hadronic invariant mass, W, distribution for inelastic events in nd280 (shown with
the black solid line). The red hatched area shows the resonance contributions while the blue hatched
area shows the contributions from the type of inelastic events dubbed in GENIE as ‘transition-DIS’.
The remaining contributions are coming from the ‘safe-DIS’ and ‘low Q2 DIS’ components. Different
uncertainties are associated with each component: The resonance uncertainty is of the order of 20%, while
the ‘transition-DIS’ uncertainty is of the order of 50%. The uncertainty associated with the remaining
DIS component at higher invariant masses is significantly lower (of the order of 5% at an energy of 5
GeV and lower at higher energies) and have not been included at this first iteration of deploying the
reweighing tools.

17.5 Propagating hadronization and resonance decay uncertain-
ties

Significant uncertainties exist in the modelling of neutrino-induced hadronization for neutrinos in the few-
GeV energy range. In the energy range of T2K, possibly the most important hadronization uncertainty
is that in the assignment of pion kinematics for Nπ hadronic states. In GENIE, low invariant-mass
hadronization is handled exclusively by the KNO-based model included in AGKY. This model uses
target-fragment Feynman x (xF) and transverse momentum (p2

T) pdfs extracted from bubble chamber
data. The pdf used for xF has a particularly large effect on the characteristics of the generated hadronic
system since a preferentially backward-going (in the hadronic CM frame) heavy target-fragment (nucleon)
leads to a preferentially forward-going fast current-fragment (pion). This allows GENIE to reproduce the
experimental data on the backward/forward xF asymmetry. There is, however, experimental ambiguity
on whether this backward/forward asymmetry also exists for lower-multiplicity events. The xF and p2

T

pdfs used in GENIE (v2.6.0) are shown in Figs. 17.3 and 17.4 respectively. They are parametrized as

f(xF) = Ae0.5(xF−<xF>)2/σ2
xF (17.3)

and
f(p2

T) = Be−p
2
T /<p

2
T> (17.4)

In the reweighting scheme employed in this work, the systematic parameter xxF1π
AGKY (xpT1π

AGKY) is used

17.5. PROPAGATING HADRONIZATION AND RESONANCE DECAY UNCERTAINTIES 211

to tweak < xF > (< p2
T >) in Eqs. 17.3 (17.4). This modifies the xF and p2

T pdfs as shown in Figs.
17.5 and 17.6. Our reweighting code identifies events with a Nπ hadronic state produced by the AGKY
model and extracts the pion xF , p2

T and the hadronic invariant massW . For each such event, 2 × 104 Nπ
hadronic decays, with invariant mass W , are performed for both the default and tweaked values of the
xxF1π
AGKY and xpT1π

AGKY systematic parameters. The generated decays are analysed to obtain the default and
tweaked 2-dimensional pion-kinematics pdfs fdefπ (xF , p

2
T ;W) and f twkπ (xF , p

2
T ;W). The event weight is

computed as
w = f twkπ (xF , p

2
T ;W)/fdefπ (xF , p

2
T ;W) (17.5)

Fx
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

F
d

xd
N

)
0

(1
/N

0

0.02

0.04

0.06

0.08

0.1 Constant 0.004168± 0.08296

Mean 0.01943± -0.3845

Sigma 0.01602± 0.3617

Constant 0.004168± 0.08296

Mean 0.01943± -0.3845

Sigma 0.01602± 0.3617

Constant 0.004168± 0.08296

Mean 0.01943± -0.3845

Sigma 0.01602± 0.3617

Constant 0.004168± 0.08296

Mean 0.01943± -0.3845

Sigma 0.01602± 0.3617

data from Cooper

Neutrino 1982 proceedings

Figure 17.3: Nucleon Feynman x (xF) pdf used
in the GENIE AGKY model for generating the
kinematics of 2-body N + π primary hadronic
systems.

)2 (GeV2

T
p

0.05 0.1 0.15 0.2 0.25 0.3
)

-2
 (

G
e
V

2 T
d

pd
N

)
0

(1
/N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Constant 0.1369± -0.2134

Slope 1.155± -6.625

Constant 0.1369± -0.2134

Slope 1.155± -6.625

Constant 0.1369± -0.2134

Slope 1.155± -6.625

Constant 0.1369± -0.2134

Slope 1.155± -6.625

data from Derrick et al., PRD17, 1978

)
2

T
(Constant+Slope*p

) = e
2

T
f(p

Figure 17.4: Nucleon transverse momentum
(p2
T) pdf used in the GENIE AGKY model for

generating the kinematics of 2-body N + π pri-
mary hadronic systems.

17.5.0.1 Formation-zone uncertainties

It is well established that hadrons produced in the nuclear environment do not immediately reinteract
with their full cross section. Initially quarks propagate through the nucleus with a dramatically reduced
probability of interaction as they have not yet materialized as hadrons. This is implemented in GENIE
as a ‘free step’ for all hadrons produced in deep-inelastic reactions. The ‘free step’, fz, which comes from
a formation time of τ0 = 0.342 fm/c, is calculated as

fz = pcτ0/m (17.6)

where p is the hadron momentum, m is the hadron mass and c is the speed of light.
In the reweighting scheme employed in this work, the original formation zone assigned to each hadron

during event generation is recovered from the distance between the intranuclear event vertex and the
hadron position as recorded at the beginning of the intranuclear cascade step. As usual, the systematic
parameter xfz modifies the formation zone:

fz → f ′z = fz(1 + xfz ∗ δfz/fz) (17.7)

Weights are calculated in a way similar to that used when modifying the hadron mean free path (see
section 17.6). When the formation zone is tweaked, it alters the amount of nuclear matter through
which the hadron must propagate before it exits the target nucleus. The nominal and tweaked survival
probabilities are calculated as in Eq. 17.12 and a hadron weight is assigned as in Eq. 17.15. An event
weight is calculated as the product of particle weights for all particles in the primary hadronic system.

212 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

Fx
1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4

F
(1

/N
o
)d

N
/d

x

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 17.5: Default xF pdf (solid line) and
tweaked pdfs (dotted lines) resulting from mod-
ifying the xxF1π

AGKY systematic parameter by ±1.

)2 (GeV2

T
p

3
10

2
10

1
10

2 T
(1

/N
o

)d
N

/d
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 17.6: Default p2
T pdf (solid line) and

tweaked pdfs (dotted lines) resulting from mod-
ifying the xpT1π

AGKY systematic parameter by ±1.

17.5.0.2 Pion angular distribution uncertainties in ∆→ Nπ decay

In general, the pion angular distribution Wπ(cosθ) in ∆→ Nπ decay can be expressed as

Wπ(cosθ) = 1− p(3

2
)P2(cosθ) + p(

1

2
)P2(cosθ) (17.8)

where θ is the pion production angle in the ∆ center of mass frame with respect to the ∆ angular
momentum quantization axis, P2 is the 2nd order Legendre polynomial and p(3

2), p(1
2) are coefficients

for each state of ∆ angular momentum projection (3
2 ,

1
2).

For simplicity, GENIE decays baryon resonances isotropically during event generation. Isotropy re-
quires p(3

2) = p(1
2) = 0.5 but the Rein-Sehgal (RS) model predicts p(3

2) = 0.75 and p(1
2) = 0.25. In

this work, we employ a reweighting scheme to quantify the uncertainty over the π angular momentum
distribution. A measure of this uncertainty is taken to be the difference between the isotropic and RS
predictions. The reweighting code identifies events with a ∆ + +(1232) decaying to a Nπ state. In a
nuclear environment, where hadronic rescattering is possible, the Nπ state produced may not necessarily
be the final hadronic state. Once the event is identified, the daughter π and parent ∆ 4-momenta in
the LAB frame are used to calculate the π 4-momentum in the ∆ center-of-mass frame. Then the π
production angle θ is calculated with respect to an arbitrarily-defined angular momentum quantization
axis (+z). Let W iso

π (cosθ) and WRS
π (cosθ) be, respectively, the π production-angle probability density

for the isotropic and RS cases, computed from Eq. 17.8. An event weight is constructed as follows:

w =
(
x∆→πN
θπ WRS

π (cosθ) + (1− x∆→πN
θπ)W iso

π (cosθ)
)
/W iso

π (cosθ) (17.9)

where x∆→πN
θπ

is the corresponding nuisance parameter. For x∆→πN
θπ

= 0, all weights are equal to 1,
i.e. this setting corresponds to the default case of isotropic ∆ decays. For x∆→πN

θπ
= 1, the calculated

weight is equal toWRS
π (cosθ)/W iso

π (cosθ); this reweights the isotropic pion angular distributions to those
predicted by RS. For values of x∆→πN

θπ
between 0 and 1, there is a linear transition between the isotropic

and RS angular distributions.

17.5. PROPAGATING HADRONIZATION AND RESONANCE DECAY UNCERTAINTIES 213

π
θcos

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

)
π

θ
W

(c
o

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
RS

isotropy

Figure 17.7: Angular distributions for pions from ∆ → πN decays for various values of the x∆→πN
θπ

nuisance parameter between -1 and 1. The isotropic distribution (GENIE simulation default) is obtained
for x∆→πN

θπ
= 0. The RS model prediction is obtained for x∆→πN

θπ
= 1.

17.5.0.3 Branching ratio uncertainties

Reweighting events to account for changes in decay branching ratios is straightforward. It is important
to ensure that the sum of all branching ratios for each unstable particle remains unchanged.

Let xpd be a nuisance parameter which affects the branching ratio fpd for the decay channel d which is
available to particle p. As usual in this work, the nuisance parameter modifies the corresponding physics
parameter (branching ratio) as fpd → f ′pd = fpd (1 + xpd ∗ σfpd /f

p
d), where σfpd is the uncertainty in the

branching ratio. In the reweighting scheme employed in this work, if any branching ratio of a given
particle is tweaked, then all decays of that particle are reweighted so that the sum of all branching ratios
remains unchanged. If xpd is tweaked, the weight for decay d is computed as follows:

wpd =
f ′pd
fpd

(17.10)

For every other decay d′ 6= d of that particle a weight is computed as:

wpd′ =
1− f ′pd
1− fpd

(17.11)

The above weight is assigned to a single unstable particle for which the branching ratio of any decay
channel has been altered. The event weight is the product of weights for all such particles.

214 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

17.6 Propagating intranuclear hadron transport uncertainties

Hadrons produced in the nuclear environment may rescatter on their way out of the nucleus, and these
reinteractions significantly modify the observable distributions. The simulated effect of hadronic reinit-
eractions is illustrated in Tab. 17.4 and Fig. 17.8. The sensitivity of a particular experiment to intranu-
clear rescattering depends strongly on the detector technology, the energy range of the neutrinos, and
the physics measurement being made.

 KE (GeV)+
π

0.0 0.1 0.2 0.3 0.4 0.5 0.6

e
v
e
n

ts
 /
 1

0
 M

e
V

0.0

0.2

0.4

0.6

0.8

1.0

3
10×

+
πfinal state

+
πprimary

 KE (GeV)+
π

0.0 0.1 0.2 0.3 0.4 0.5 0.6

fi
n

a
l
s
ta

te
 /

 p
ri
m

a
ry

0.5

1.0

1.5

Figure 17.8: Kinetic energy spectrum of final state and primary (before rescattering) π+ produced in
νµFe

56 interactions at 1 GeV.

Neutrino generators typically use intranuclear cascade simulations to handle the propagation of
hadronic multi-particle states. At each simulation step a large number of outcomes is accessible with
the probabilities of those outcomes being conditional upon the hadron transport history up to that point.
The complexity of intranuclear hadron transport makes it difficult to evaluate the probability for a gen-
erated multi-particle final state, given a primary hadronic multi-particle system, without resorting to a
Monte Carlo method. Subsequently, is not possible to evaluate how that probability ought to be modified
in response to changes in the fundamental physics inputs. As a result it is generally not possible to build
comprehensive reweighing schemes for intranuclear hadron-transport simulations.

In this regard GENIE’s INTRANUKE/hA model is unique by virtue of the simplicity of the simulation
while, at the same time, it exhibiting very reliable aspects by being anchored to key hadron-nucleon and
hadron-nucleus data. Its simplicity allows a rather straightforward probability estimate for the generated
final state making it amenable to reweighing. A full systematic analysis of the model is therefore possible
making it a unique tool in the analysis of neutrino data. The event reweighing strategy to be presented
here is specific to GENIE’s INTRANUKE/hA model. The current reweighing implementation has been
tied to the physics choices made in the GENIE v2.4.04.

4The validity of the current reweighing implementation in future versions of GENIE is dependent upon the IN-
TRANUKE/hA changes that may be installed. The T2KReWeight package will always be updated and kept in sync
with GENIE. In case of important updates a follow-up internal note will be posted.

17.6. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 215

Any intranuclear hadron-transport reweighing strategy should, by virtue of construction, have no
effect on the inclusive leptonic distributions of the reweighted sample, as illustrated in Fig. 17.9. In this
paper we will be referring to that probability conservation condition as the ‘unitarity constraint’. We
emphasize the fact that the constraint needs to hold only for unselected samples. It does not need to hold
for selected samples, where the normalization is expected to vary due to the effect of the cut acceptance.

The unitarity constraint is obviously very difficult to satisfy by virtue of construction and has had a
significant role in determining the reweighing strategy. Additionally, the constraint played an important
role in validating the reweighing scheme and in matching exactly all physics assumptions of the original
simulation. The most profound effect of weighting artifacts is to cause the unitarity constraint to be
violated. We will revisit the issue of the unitarity constraint in later sections and, particularly, on the
discussion of the reweighing validation.

ν

l

N

Figure 17.9: Consider the effect of modifying the intranuclear hadron-transport physics (affecting the
particles within the box) from the perspective of an observer who is blind to the hadronic system emerging
from the nucleus and measures only the primary lepton. One can easily assert that, from the perspective
of that observer, the hadron-transport reweighing scheme should have no effect on the leptonic system
characteristics of samples that have not been selected for hadronic system characteristics. The event
weights must cancel each other so as the sum of weights is conserved, therefore maintaining the sample
normalization. We will be referring to that condition as the ‘unitarity constraint’. As we will see in
the reweighing validation section, the scheme discussed in this note satisfies the unitarity constraint, by
virtue of construction, to better than 1 part in 5000.

In the reweighing strategy developed here we consider 2 kinds of physics uncertainties:

216 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

• Uncertainties in the total rescattering probability for hadrons within the target nucleus.

• Uncertainties in the relative probability of rescattering modes available to each hadron once it
interacts.

These physics uncertainties are considered separately for nucleons and pions. The determination of
simulation parameters linked with these physics uncertainties and the prescription for calculating event
weights to account for variations in these parameters is discussed next.

17.6.0.1 Reweighting the rescattering rate

During event generation, for each hadron being propagated within the nuclear environment its rescattering
probability, Phrescat (or, equivalently the survival probability, Phsurv) is calculated as

Phrescat = 1− Phsurv = 1−
∫
e−r/λ

h(~r,h,Eh)dr (17.12)

where λh is the mean free path and the integral is evaluated along the hadron trajectory. The mean free
path is a function of the hadron type, h, the hadron energy, Eh, and its position, ~r, within the target
nucleus and is computed as

λh = 1/(ρnucl(r) ∗ σhN (Eh)) (17.13)

where ρnucl(r) is the nuclear density profile and σhN (Eh) the corresponding hadron-nucleon total cross
section.

During the reweighing procedure, using the positions and 4-momenta of the simulated primary
hadronic system particles (that is the hadrons emerging from the primary interaction vertex before
any intranuclear rescattering ever took place) we calculate the exact same hadron survival probabilities
as in the original simulation. In doing so we match exactly the physics choices of the hadron transport
simulation code so as to avoid weighting artifacts. More importantly:

• The reweighing code accesses the same hadron-nucleon cross section and nuclear density profile
functions as the simulation code. The nuclear density profiles for 12C, 16O and 56Fe and the
nucleon-nucleon and pion-nucleon cross sections used by INTRANUKE/hA in GENIE v2.4.0 are
shown in Figs. 17.10 and 17.11 respectively.

• The hadrons are being transported in steps of 0.05 fm as in the original simulation.

• Each hadron is traced till it reaches a distance of r = N ∗Rnucl = N ∗R0 ∗A1/3, where R0 = 1.4 fm
and N = 3.0. This allows taking into account the effect the nuclear density distribution tail has on
the hadron survival probability. (For example, the nuclear radius, Rnucl for C12, O16 and Fe56 is
3.20 fm, 3.53 fm and 5.36 fm respectively. The reweighing, as the actual simulation code, integrates
Eq. 17.12 for distances up to 9.62 fm, 10.58 fm and 16.07 fm respectively. Compare these values
with the nuclear density profiles shown in Fig. 17.10.)

• The nuclear density distribution through which the hadron is tracked is increased by n ∗ λB , where
λB is the de Broglie wave-length of the hadron and n is a tunable parameter (in GENIE v2.4.0,
INTRANUKE/hA uses n = 1 for nucleons and n = 0.5 for pions). As explained earlier, this empir-
ical approach is an important feature of the INTRANUKE/hA mean free path tuning, accounting
for the effects of wave-like processes to the hadron survival probability which are typically not well
described within the context of an INC model. The reweighing code matches that feature so as
to emulate the hadron survival probabilities calculated during event generation. The effect on the
nuclear density profile is shown in Fig. 17.12.

17.6. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 217

The reweighing scheme allows the mean free path, λh, for a hadron type h to be modified in terms of its
corresponding error, δλh:

λh → λh′ = λh(1 + xhmfp ∗ δλh/λh) (17.14)

where λh′ is the modified mean free path and xmfp is a tweaking knob. Then, by re-evaluating the integral
in Eq. 17.12, we are able to compute the hadron survival probabilities that the simulation code would
have computed, had it been using the modified mean free path. The nominal, Phsurv, and tweaked, Ph′surv,
survival probabilities can be used to calculate the weight that accounts for that change in the hadron
mean free path. The choice of how to weight each hadron depends critically on its intranuclear transport
history. Consider the case illustrated in Fig. 17.13 where a neutrino event has 2 primary hadrons, h1

and h2, one of which (h1) re-interacts while the other (h2) escapes. Had the mean free path been larger
than the one used in the simulation (and therefore, had the the interaction probability been lower) then
h1’s history would have been more unlikely while, on the other hand, h2’s history would have been more
likely. Therefore, in order to account for an increase in mean free path, h1 has to be weighted down
while h2 has to be weighted up (and vice versa for a mean free path decrease). The desired qualitative
behavior of single-hadron weights in response to mean free path changes is summarized in Tab. 17.5.
The following weighting function exhibits the desired qualitative characteristics:

whmfp =

1−Ph′surv
1−Phsurv

if hre-interacts

Ph′surv
Phsurv

if hescapes

(17.15)

where Phsurv is the hadron survival probability corresponding to mean free path λh and Ph′surv is the
hadron survival probability corresponding to the tweaked mean free path λh′.

r (fm)
1 2 3 4 5 6 7

)
-3

d
e
n
s
it
y
 (

(g
r/

m
o
l)
*f

m

0

20

40

60

80

100

120

140

160

180
-3

10×

12C
16

O
56

Fe

Figure 17.10: Nuclear density profiles for C12, O16 and Fe56.

218 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

hadron kinetic energy (MeV)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

3
10×

 (
m

b
)

h
N

σ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
3

10×

GENIE v2.4.0, hN cross sections

Figure 17.11: The nucleon-nucleon (dashed line) and pion-nucleon (solid line) cross sections used in
INTRANUKE/hA (GENIE v2.4.0) for determining the hadron mean free path.

r (fm)
0 2 4 6 8 10

)
-3

d
e

n
s
it
y
 (

(g
r/

m
o

l)
*f

m

0

20

40

60

80

100

120

140

160

180
-3

10×

default

0.1

0.5

1.0

Figure 17.12: Nuclear density profiles for Fe56 ‘stretched’ by the de-Broglie wave-length corresponding
to hadrons with a momentum of 0.1 GeV, 0.5 GeV and 1.0 GeV. The default nuclear density distribution
is also shown.

17.6. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 219

F
in
al
-

P
ri
m
ar
y
H
ad

ro
ni
c
Sy

st
em

St
at
e

0π
X

1π
0
X

1
π

+
X

1π
−
X

2π
0
X

2π
+
X

2π
−
X

π
0
π

+
X

π
0
π
−
X

π
+
π
−
X

0
π
X

29
34

46
12
71
0

22
03
3

30
38

11
3

51
5

35
0

57
19
3

1π
0
X

17
44

44
64

3
38
36

49
1

10
02

25
1

16
22

30
7

59

1
π

+
X

25
90

10
65

82
45

9
23

14
66
0

0
17
46

5
99
7

1π
−
X

29
8

11
27

1
12

09
0

16
0

46
34

31
8

10
01

2π
0
X

0
0

0
0

27
61

2
0

26
0

40
7

2
π

+
X

57
5

41
1

0
1

19
99

0
13
6

0
12

2π
−
X

0
0

0
1

0
0

13
4

0
31

0

π
0
π

+
X

41
2

86
9

11
28

23
2

10
9

10
6

0
98
37

15
18
3

π
0
π
−
X

0
0

1
0

73
0

8
5

18
08

15
4

π
+
π
−
X

79
9

7
10

65
0

0
0

13
9

20
56
43

T
ab

le
17
.4
:

O
cc
up

an
cy

of
pr
im

ar
y
an

d
fin

al
st
at
e
ha

dr
on

ic
sy
st
em

s
fo
r
in
te
ra
ct
io
ns

off
O

1
6
co
m
pu

te
d

w
it
h

G
E
N
IE

v2
.4
.0
.

T
he

off
-d
ia
go
na

le
le
m
en
ts

ill
us
tr
at
e
an

d
qu

an
ti
fy

th
e
to
po

lo
gy

ch
an

gi
ng

eff
ec
t
of

in
tr
an

uc
le
ar

re
sc
at
te
ri
ng

.

220 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

ν

l

N
1

h

2
h

Figure 17.13: An example event with two primary hadrons, h1 and h2, one of which (h1) re-interacts
within the target nucleus while the other escapes (h2). See text for a description of the weights to be
assigned to each hadron if the mean free path has been tweaked.

17.6. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 221

λh change Phrescatchange Weight Weight

(hadrons interacting) (hadrons escaping)

⇑ ⇓ ⇓ ⇑

⇓ ⇑ ⇑ ⇓

Table 17.5: The intended qualitative behavior of hadron weights in response to mean free path, λh,
changes depending on whether the simulated hadron had been rescattered or escaped. Had the mean free
path been larger in reality than the one used in the simulation (and therefore, had the the interaction
probability, Phrescat, been lower) then rescattered hadrons would have been over-represented in the gen-
erated sample and they would need to be weighted-down to match reality, while escaping hadrons would
have been under-represented and they would need to be weighted-up. Vice versa for a mean free path
decrease. See text for description of the hadron weighting functions.

17.6.0.2 Reweighting the rescattering fates

Once INTRANUKE/hA determines that a particular hadron is to be rescattered, then a host of scattering
modes are available to it. We will be referring to these scattering modes as the hadron fates. Many fates
are considered for both pions and nucleons. The fates considered here are: elastic, inelastic, charge
exchange5, absorption6, and pion production. Each such fate may include many actual rescattering
channels 7.

In order to calculate the probability of each fate INTRANUKE/hA, being an effective data-driven
hadron transport MC, switches to a more macroscopic description of hadron rescattering: Rather than
building everything up from hadron-nucleon cross sections, at this point in event simulation, INTRANUKE/hA
determines the probability for each fate using built-in hadron-nucleus cross sections coming primarily from
data. The probability for a hadron fate f is

Phf = σhAf /σhAtotal (17.16)

where σhAf is the hadron-nucleus cross section for that particular fate and σhAtotal is the total hadron-nucleus
cross section. The calculated probabilities are conditional upon a hadron being rescattered and the sum
of these probabilities over all possible fates should always add up to 1. The default probability fractions
for pions and nucleons in INTRANUKE/hA (GENIE v2.4.0) are shown in Fig. 17.14 and 17.15.

The generation strategy leads to a conceptually simple and technically straight-forward fate reweigh-
ing strategy: The hadron-nucleus cross section for a particular fate may be modified in terms of its
corresponding error, δσhAf as in:

σhAf → σ′hAf = σhAf (1 + xhf ∗ δσhAf /σhAf) (17.17)

where xf is a fate tweaking knob.
It follows that the single-hadron fate weight is

whfate =
∑
f

δf ;f ′ ∗ xhf ∗ δσhAf /σhAf (17.18)

5Only single charge exchange is considered
6Followed by emission of 2 or more nucleons with no pions in the final state. The term ‘absorption’ is usually used

for pions while the term ‘multi-nucleon knock-out’ is used for nucleons. Here, for simplicity and in the interest of having
common fate names for both pions and nucleons we will be using the term ‘absorption’ for both.

7For example, the ‘pion absorption’ fate includes rescattering modes with any of the np, pp, npp, nnp, nnpp final states

222 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

where f runs over all possible fates {elastic, inelastic, charge exchange, absorption, pion production}, f ′
is the actual fate for that hadron as it was determined during the simulation and δf ;f ′ is a factor which
is 1 if f = f ′ and 0 otherwise.

Not all 5 hadron fates may be tweaked simultaneously. Since the sum of all fractions should add
up to 1 then, at most, at most 4 out of the 5 fates may be tweaked directly. The fates not tweaked
directly (cushion terms) are adjusted automatically to conserve the sum. The choice of which fates act
as a cushion terms is configurable.

In Fig. 17.16 we show the tweaked pion fate fraction (dashed lines) obtained by simultaneously
increasing the pion production, absorption, charge exchange and inelastic cross sections by 10%. In this
example the elastic component is being used as a cushion term absorbing the changes in all other terms
so as to maintain the total probability. The default pion fate fractions (solid lines) are superimposed for
reference.

 kinetic energy (MeV)π

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3
10×

fr
a

c
ti
o

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

elastic

inelastic

cex

absorption

 productionπ

A fate fractionsπGENIE v2.4.0,

Figure 17.14: The default fate fractions for rescattered pions in INTRANUKE/hA (GENIE v2.4.0).
The area that corresponds to each pion fate represents the probability for that fate as a function of the
pion kinetic energy. The probabilities shown here conditional upon the pion interacting so they always
add up to 1.

17.6.0.3 Computing event weights

The scheme outlined above, provides a detailed prescription for calculating single-hadron weights so as to
take into account the effect that modified hadron-nucleon and hadron-nucleus cross sections would have
had on that hadron (whmfp and whfate respectively). The total single-hadron weight is

wh = whmfp ∗ whfate (17.19)

17.6. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 223

nucleon kinetic energy (MeV)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3
10×

fr
a

c
ti
o

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

elastic

inelastic

cex

absorption

 productionπ

GENIE v2.4.0, NA fate fractions

Figure 17.15: The default fate fractions for rescattered nucleons in INTRANUKE/hA (GENIE v2.4.0).
The area that corresponds to each nucleon fate represents the probability for that fate as a function of
the nucleon kinetic energy. The probabilities shown here conditional upon the nucleon interacting so they
always add up to 1.

The corresponding hadron transport (HT) related weight for a neutrino interaction event, wevtHT , is,
obviously, the product of single-hadron weights

wevtHT =
∏
j

whj (17.20)

where the index j runs over all the primary hadronic system particles in the event.

17.6.0.4 Computing penalty terms

A penalty term can easily be calculated from the physics tweaking knobs which can be included as
nuisance parameters in physics fits. The penalty has components, penalizing deviations from the default
total rescattering rate and from the default fractions of rescattering modes. It can be written as

χ2
penalty =

∑
h=π,N

{(xhmfp)2 +
∑
f 6=fc

(xhf)2 + (x̂hfc)
2} (17.21)

where the x′s correspond to mean free path and fate tweaking knobs for pions and nucleons The sum
over fates, f , excludes the cushion term, fc, which is added separately. The reason is technical: All
directly tweaked hadron-nucleus cross sections are tweaked in units of their own (typically hadron energy-
dependent) uncertainty, therefore having a corresponding contribution to penalty term which is energy
independent. The change in the cushion term, being forced to absorb the other changes, is not well

224 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

 kinetic energy (MeV)π

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3
10×

fr
a

c
ti
o

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

elastic

inelastic

cex

absorption

 productionπ

A fate fractionsπGENIE v2.4.0,

Figure 17.16: The default (solid lines) and tweaked (dashed lines) pion fate fractions. The tweaked pion
fate fractions are shown for a case where the pion production, absorption, charge exchange and inelastic
cross sections have been increased by 10%. Here it is the elastic cross section term that is being used as
the cushion term. See text for details.

defined in terms of its own uncertainty. Therefore, its contribution in the penalty term, x̂hfc
2

, is averaged
over the hadron energy range.

17.6.0.5 Unitarity expectations

This section demonstrates why both the intranuclear reweighting schemes presented earlier are expected
to maintain unitarity. In general, when reweighting an event, we multiply by a weight w

w =
P ′

P
. (17.22)

where P and P ′ are the probabilities for getting that event8, for the nominal and tweaked cases
respectively, and they depend on the particular event being reweighted.

When describing processes where multiple discrete outcomes are possible then the analytical form of
the above probabilities will change depending on the outcome. An example of this is the case of mean
free path (rescattering rate) reweighting where the fate of an event can be divided into two categories:
Those that rescattered and those that escaped the nucleus. The two forms of P in this case are,

Prescat = 1− e
−x
λ (17.23)

and
8In this section an event is defined as the transport of a single hadron.

17.6. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 225

Psurv = e
−x
λ . (17.24)

Thus a hadron that rescattered will receive a weight, reflecting a change in mean free path of λ→ λ′,
of

wrescat =
1− e

−x
λ′

1− e−xλ
(17.25)

whereas one that escaped the nucleus will get a weight

wsurv =
e
−x
λ′

e
−x
λ

(17.26)

Take the general case where there are n possible outcomes and where the i’th outcome occurs with a
probability Pi. For a set of Ntot events one expects

Ni = Ntot ×
Pi∑n
j=1 Pj

(17.27)

events corresponding to the i’th outcome.
Now consider reweighting all Ntot events. Events corresponding to the i’th outcome get weighted by

wi so that the after reweighting the number of events for the i’th outcome is given by

N ′i = wi ×Ni. (17.28)

Note that Eq. 17.28 holds only if we consider just the functional dependance of the weights on the
weighting parameters9. The number of events in the new reweighted sample is given by

N ′tot =

Ntot∑
j=1

wevtj

=

n∑
i=1

woutcomei ×Ni

=

n∑
i=1

P ′i
Pi
×Ni.

Substituting Eq. 17.27 we get,

N ′tot = Ntot ×
∑n
i=1 P

′
i∑n

j=1 Pj
.

So if
n∑
i=1

Pi =

n∑
i=1

P ′i (17.29)

then N ′tot = Ntot and unitarity is conserved.
In the case of rescattering,

9We neglect any functional dependance on kinematical quantities. This is a valid assumption if the density of events,
defined as the number in a given volume of kinematical phase space, is high enough such that a statistically significant
number of neighboring events cover a small enough volume in the kinematical phase space over which the effect of the
variation in kinematical quantities is negligible.

226 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

n∑
i=1

Pi = Prescat + Psurv

= 1− e
−x
λ + e

−x
λ

= 1− e
−x
λ′ + e

−x
λ′

= P ′rescat + P ′surv

=

n∑
i=1

P ′i

So for the rescattering scheme we expect unitarity to be a built in feature. This is also true for the
fate reweighting where the cushion term ensures Eq. 17.29 is satisfied. It is worth highlighting that the
unitarity constraint is sensitive to any differences between the generator and the reweighting scheme.
This is also why a particular implementation of a reweighting scheme is not generator agnostic.

17.7 Event reweighting applications

17.7.1 Built-in applications
17.7.1.1 The grwght1scan utility

Name

grwght1scan - Generates weights given an input GHEP event file and for a given systematic parameter
(supported by the ReWeight package). It outputs a ROOT file containing a tree with an entry for every
input event. Each such tree entry contains a TArrayF of all computed weights and a TArrayF of all used
tweak dial values.

Source and build options

The source code for this application is in ‘$GENIE/src/support/rwght/gRwght1Scan.cxx ’.
To enable this application (and, also, to build the ReWeight package library) add ‘--enable-rwght’ during
the GENIE build configuration step.

Synopsis

grwght1scan
-f input_filename
[-n number_of_events]
-s systematic_name
-t number_of_tweaking_diall_values
[-p neutrino_codes]

where [] is an optional argument.

Description

The following options are available:

-f Specifies an input GHEP event file.

17.7. EVENT REWEIGHTING APPLICATIONS 227

-n Specifies the number of events to process.

This is an optional argument. By default GENIE will process all events.

-s Specifies the name of the systematic param to tweak.

-t Specifies the number of the systematic parameter tweaking dial values between -1 and 1.

Note: This must be an odd number so as to include al; -1, 0 and 1. If it is an even number then it
will be incremented by 1.

-p If set, specifies which neutrino species to reweight.

This is an optional argument. By default GENIE will reweight all neutrino species. The expected
input is a comma separated list of PDG codes.

Examples

17.7.2 Writing a new reweighting application
Writing a new reweighting application is relatively trivial. The built-in applications described above can
be used as a template and be modified accordingly. A GReWeight object provides an interface between
the user and the GENIE event reweighting objects (weight calculators). GReWeight holds both a list of
weight calculators (GReWeightI subclasses), each one referred-to by a user-specified name, and a set of
tweaked systematic parameters (GSystSet object).

Typically, in an event reweighting application one would have to include at least the following steps:

• Instantiate a GReWeight object and add to it a set of concrete weight calculators. For example
(modify accordingly by adding / removing weight calculators from this list):

GReWeight rw;

rw.AdoptWghtCalc("xsec_ccqe", new GReWeightNuXSecCCQE);
rw.AdoptWghtCalc("xsec_ccqe_vec", new GReWeightNuXSecCCQEvec);
rw.AdoptWghtCalc("xsec_ccres", new GReWeightNuXSecCCRES);
rw.AdoptWghtCalc("xsec_ncres", new GReWeightNuXSecNCRES);
rw.AdoptWghtCalc("xsec_nonresbkg", new GReWeightNonResonanceBkg);
rw.AdoptWghtCalc("xsec_dis", new GReWeightNuXSecDIS);
rw.AdoptWghtCalc("xsec_coh", new GReWeightNuXSecCOH);
rw.AdoptWghtCalc("nuclear_qe", new GReWeightFGM);
rw.AdoptWghtCalc("nuclear_dis", new GReWeightDISNuclMod);
rw.AdoptWghtCalc("hadro_res_decay", new GReWeightResonanceDecay);
rw.AdoptWghtCalc("hadro_fzone", new GReWeightFZone);
rw.AdoptWghtCalc("hadro_intranuke", new GReWeightINuke);
rw.AdoptWghtCalc("hadro_agky", new GReWeightAGKY);

• Retrieve and fine-tune weight calculators. This is an optional step. Each calculator is retrieved
from GReWeight using the user-defined name specified in the previous step. Fine-tuning methods

228 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

are specific to each weight calculator, so please refer to the documentation for each individual
calculator. For example, to disable νe, ν̄e and ν̄µ reweighting in GReWeightNuXSecCCQE stored
with the “xsec_calc” name, type:

GReWeightNuXSecCCQE * rwccqe =
dynamic_cast<GReWeightNuXSecCCQE *> (
rw.WghtCalc("xsec_ccqe"));

rwccqe -> RewNue (false);
rwccqe -> RewNuebar (false);
rwccqe -> RewNumubar(false);

• Get the GSystSet object held by GReWeight and tweak all systematic params you wish to consider
(complete list to be found in ‘$GENIE/src/ReWeight/GSyst.h’). What you are actually setting is the
value d of a tweaking dial (default value: 0) which modifies a corresponding physics parameter p
as p → p′ = p× (1 + d× (dp/p)). Setting a tweaking dial to +/−1 modifies a physics quantity by
+/− 1 σ respectivelly. The default fractional errors dp/p are defined in GSystUncertainty and can
be overriden. The following example sets non-default values to a series of systematics parameters
handled by the weight calculators included in the previous step. After all parameters have been
tweaked, invoke GReWeight::Reconfigure() so that tweaked parameters can be propagated across
GENIE. You probably need to be setting these parameters and reconfiguring GENIE inside a ‘pa-
rameter loop’ or a ‘minimization function’.

GSystSet & syst = rw.Systematics();

syst.Set(kXSecTwkDial_NormCCQE, +1.0);
syst.Set(kXSecTwkDial_MaCCQEshape, +1.0);
syst.Set(kXSecTwkDial_NormCCRES, -1.0);
syst.Set(kXSecTwkDial_VecFFCCQEshape, -1.0);
syst.Set(kXSecTwkDial_MaCCRESshape, -1.0);
syst.Set(kXSecTwkDial_MvCCRESshape, +0.5);
syst.Set(kXSecTwkDial_NormNCRES, +1.0);
syst.Set(kXSecTwkDial_MaNCRESshape, -0.7);
syst.Set(kXSecTwkDial_MvNCRESshape, +0.3);
syst.Set(kXSecTwkDial_RvpCC1pi, +0.5);
syst.Set(kXSecTwkDial_RvnCC1pi, +0.5);
syst.Set(kXSecTwkDial_MaCOHpi, -0.5);
syst.Set(kINukeTwkDial_MFP_pi, +1.0);
syst.Set(kINukeTwkDial_MFP_N, -1.0);
syst.Set(kINukeTwkDial_FrPiProd_pi, -0.7);
syst.Set(kHadrAGKYTwkDial_xF1pi, -1.0);
syst.Set(kHadrAGKYTwkDial_pT1pi, +1.0);
syst.Set(kHadrNuclTwkDial_FormZone, +1.0);
syst.Set(kRDcyTwkDial_Theta_Delta2Npi, +1.0);

rw.Reconfigure();

17.8. ADDING A NEW EVENT REWEIGHTING CLASS 229

• Calculate an event weight by invoking GReWeight::CalcWeight(). The function expects an Even-
tRecord object as input. The return value is the calculated weight and is computed as the product
of the weights computed by all included weight calculators for the current set of systematics /
tweaking dial values stored in GSystSet. You can also calculate a penalty factor, χ2

penalty, for the
current set of systematic tweaking dial values by invoking GReWeight::CalcChisq().

Important notes The reweighting package includes a large number of weight calculators handling
a large numbers of systematic parameters. Alternative reweighting schemes may exist for the same
systematic parameter. It is the user’s responsibilty to make sure that all parameters tweaked in GSystSet
are handled by exactly one weight calculator added via GReWeight::AdoptWeightCalc(). Additionally,
certain systematic parameters should not be combined together. For example, you should tweak either
kXSecTwkDial_MaCCQE (tweakes the axial mass used in the CCQE cross section model and allows it to
change both the shape and the normalization of the output dσ/dQ2 distribution at fixed energy), OR
kXSecTwkDial_NormCCQE and kXSecTwkDial_MaCCQEshape (where the normalization and shape-effects have
been separated) and you should never mix them all together. All in all, a good understanding of the
effect of each included systematic parameter and weight calculator (see this Chapter) is imperative in
order to get meaningfull results.

17.8 Adding a new event reweighting class
A large number of event reweighting classes (weight calculators) exist within GENIE and can serve as
examples. One can easily add a new concrete weight calculator which can be integrated with the existing
reweighting framework. This new calculator should subclass GReWeightI and implement, at least, the
following methods:

• ‘bool IsHandled(genie::GSyst_t syst)’ :
Declare whether the weight calculator handles the input systematic parameter.

• ‘void SetSystematic(genie::GSyst_t syst, double val)’ :
Update the current value for the specified systematic parameter.

• ‘void Reset(void)’ :
Set all handled systematic parameters to default values.

• ‘void Reconfigure(void)’ :
Propagate updated systematic parameter values to actual GENIE MC code, if needed.

• ‘double CalcWeight(const genie::EventRecord & event)’ :
Calculate a weight for the input event using the current values of all handled systematic parameters.

• ‘double CalcChisq(void)’ :
Calculate a penalty factor for the current deviation of all handled systematic params from their
default values.

This is the minimum set of methods required by GENIE itself. More methods, specific to each weight
calculator, can be added and used in the user’s event reweighting application so as to fine-tune the
behaviour of each calculator.

Note that if you are adding a weight calculator to quantify the effect of a new systematic parameter,
one which is not already included in ‘$GENIE/src/ReWeight/GSyst.h’, then also you need to:

• add the new parameter in ‘$GENIE/src/ReWeight/GSyst.h’, and

• define a default 1 σ error in ‘$GENIE/src/ReWeight/GSystUncertainty.cxx ’.

230 CHAPTER 17. SUPPORTING TOOLS / EVENT REWEIGHTING

Part VI

Appendices

231

Appendix A

Copyright Notice and Citation
Guidelines

(c) 2003-2018, The GENIE Collaboration

For all communications:
Dr. Constantinos Andreopoulos < costas.andreopoulos@stfc.ac.uk >

University of Liverpool STFC Rutherford Appleton Laboratory

Physics Department Department of Particle Physics

Liverpool L69 7ZE, UK Harwell Oxford Campus, Oxfordshire OX11 0QX, UK

TEL: +44-(0)1517-943201 TEL: +44-(0)1235-445091

FAX: +44-(0)1235-446733

The license conditions may be found in http://copyright.genie-mc.org

A.1 Guidelines for Fair Academic Use

The authors of GENIE endorse the MCNET guidelines1 for fair academic use. In particular, users are
invited to consider which GENIE components are important for a particular analysis and cire them, in
addition to the main references.

A.2 Main references

All derivative works should cite:

C.Andreopoulos et al., ‘The GENIE Neutrino Monte Carlo Generator’, Nucl.Instrum.Meth. A614:87-
104,2010.

1Full text may be found at http://www.montecarlonet.org/GUIDELINES

233

http://copyright.genie-mc.org

234 APPENDIX A. COPYRIGHT NOTICE AND CITATION GUIDELINES

Corresponding BibTEX entry:

@Article{Andreopoulos:2009rq,
author = "Andreopoulos, C. and others",
title = "{The GENIE Neutrino Monte Carlo Generator}",
journal = "Nucl. Instrum. Meth.",
volume = "A614",
year = "2010",
pages = "87-104",
eprint = "0905.2517",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
doi = "10.1016/j.nima.2009.12.009",
SLACcitation = "%%CITATION = 0905.2517;%%"

}

Appendix B

Downloading & Installing GENIE

B.1 Understanding the versioning scheme
SVN Tags

In the GENIE version numbering scheme, releases are tagged in the SVN source-code repository as R-
major_minor_revision1. When a number of significant functionality improvements or additions have
been made, the major index is incremented. The minor index is incremented in case of significant fixes
and/or minor feature additions. The revision number is incremented for minor bug fixes and updates.

Version number semantics

• Versions with even minor number (eg 2.0.*, 2.4.*) correspond to stable, fully validated physics
production releases2.

• Versions with odd minor number (eg. 2.3.*, 2.5.*) correspond to release candidates tagged during
the validation stage preceding the release of a production version.

• Production versions, and candidate releases, always have an even revision number.

• The SVN head has a nominal version number of 999.999.999.

Release codenames

The major production-quality releases are code-named after modern extinct or endangered species (series
of production releases: Auk , Blueback , Cheetah , Dodo, Elk , Fox , Gazelle , Hippo, Ibex ,...).

Release qualifiers

The GENIE releases are marked as:

• pro : Validated production-quality versions recommended for physics studies.

• old : Older ‘pro’ versions that have been greatly superseded by newer versions. Versions marked as
‘old’ become unsupported. We appreciate that experiments get highly attached on specific versions
due to the enormous amount of work invested in generating high statistics samples and calculating

1For example, tag R-1_99_1 corresponds to GENIE vrs 1.99.1, tag R-2_0_2 corresponds to GENIE vrs 2.0.2 etc.
2To the dismay of mathematicians, our versioning scheme uses 0 as am even number.

235

236 APPENDIX B. DOWNLOADING & INSTALLING GENIE

MC-dependent corrections and systematics. We strive to support ‘pro’ versions for a minimum of
two years.

• rc: Release candidates. You may not use for physics studies.

• special : Special releases prepared for a particular study or event such as a) the evaluation of an
experiment systematic with an appropriately modified version of GENIE, or b) a GENIE tutorial
or a summer / winter school. You may not use these releases outside the intended context.

B.2 Obtaining the source code

The official GENIE source code is maintained at a Git repository hosted on GitHub 3. The development
version and a host of frozen physics releases are available from the repository. The code repository can be
accessed anonymously via HTTP, without a GitHub account. You need to have a git client installed and
you probably already do. The website allows also to download zip compressed files of the source code.

The main GENIE area - https://github.com/GENIE-MC - contains the main repositories: geenerator
and reweight together with others. Navigate to the your repository of interests and get the URL of the
repository. To check out the generator just type

$ git clone git@github.com:GENIE-MC/Generator.git

This will give you the master branch, which is the developing area, and it’s never suggested for physics
production. Once you have the code you check out the approriate version by typing:

$ git checkout R-3_00_00

Which gives you version 3.00.00. All the versions that were on the old SVN repository have been ported
on the new repository.

Write access to the Generator repository, as well as to other GENIE products including the Compar-
isons and the Tuning require a GitHub account and it is permitted only for GENIE collaborators. Special
limited accounts may be setup for regular GENIE contributors.

B.3 3rd Party Sofwtare

A typical GENIE installation4 requires the following external packages5:

• GSL (http://www.gnu.org/software/gsl/)
The GNU Scientific Library

• PYTHIA6 (https://pythia6.hepforge.org/)
The well known LUND Monte Carlo package used by GENIE for particle decays and string frag-
mentation (for neutrino interactions of high invariant mass).

3https://github.com/
4A minimal installation that can be used for event generation / physics studies.
5The implicit assumption here is that you start with a ‘working system’ where some basic tools, such as the gcc compiler

suite, make, autoconf, PERL, CVS and SVN clients etc, are already installed. Instructions are given assuming that you are
using the bash shell but it is trivial to adapt these instructions for your own shell.

http://www.gnu.org/software/gsl/
https://pythia6.hepforge.org/

B.4. PREPARING YOUR ENVIRONMENT 237

• ROOT (https://root.cern.ch/)
A popular scientific software framework. ROOT should be configured with GSL (MathMore) and
PYTHIA6 support.

• LHAPDF5 (https://lhapdf.hepforge.org/)
The Les Houches Accord PDF interface, a PDFLIB successor.

• log4cpp (http://log4cpp.sourceforge.net/)
A C++ library for message logging.

• libxml2 (http://www.xmlsoft.org/)
The C XML library for the GNOME project.

The installation of external packages is described in detail in their corresponding web pages. Additional
detailed instructions can also be found at Appendix E of this manual.

B.4 Preparing your environment
A number of environmental variables need to bee set or updated before using GENIE.

• Set the ‘GENIE’ environmental variable to point at the top level GENIE directory

• Set the ‘ROOTSYS’ environmental variable to point at the top level ROOT directory

• Set the ‘LHAPATH’ environmental variable to point to LHAPDF’s PDF data files

• Append ‘$ROOTSYS/bin’ and ‘$GENIE/bin’ to your ‘PATH’

• Append ‘$ROOTSYS/lib’, ‘$GENIE/lib’ and the paths to the log4cpp, libxml2, LHPADF and PYTHIA6
libraries to your ‘LD_LIBRARY_PATH’ environmental variable (or to your ‘DYLD_LIBRARY_PATH’ en-
vironmental variable if you are using GENIE on MAC OS X).

It is more convenient to create a GENIE setup script and execute it before using GENIE.
A setup script should look like the following:

#!/bin/bash

export GENIE=/path/to/genie/top/directory

export ROOTSYS=/path/to/root/top/directory
export LHAPATH=/path/to/lhapdf/PDFSets/

export PATH=$PATH:\
$ROOTSYS/bin:\
$GENIE/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:\
/path/to/log4cpp/library:\
/path/to/libxml2/library:\
/path/to/lhapdf/libraries:\
/path/to/pythia6/library:\

https://root.cern.ch/
https://lhapdf.hepforge.org/
http://log4cpp.sourceforge.net/
http://www.xmlsoft.org/

238 APPENDIX B. DOWNLOADING & INSTALLING GENIE

$ROOTSYS/lib:\
$GENIE/lib

Assuming that the above script is named ‘genie_setup’, you can execute it by typing:

$ source genie_setup

B.5 Configuring GENIE

A configuration script is provided with the GENIE source code to help you configure your GENIE in-
stallation (enable / disable features and specify paths to external packages). To see what configuration
options are available, type:

$ cd $GENIE
$./configure --help

This will generate a screen output that looks like the following:

FLAG DESCRIPTION

--prefix Install path (for make install)

enable/disable options
prefix with either --enable or --disable
(eg. --enable-lhapdf --disable-flux-drivers)

profiler GENIE code profiling using Google perftools.
doxygen-doc Generate doxygen documentation at build time.
dylibversion Adds version number in dynamic library names.
lowlevel-mesg Disable (rather than filter out) some prolific

debug level messages known to slow GENIE down.
debug Adds -g compiler option to request debug info.
lhapdf Use the LHAPDF library.
cernlib Use the CERN libraries.
flux-drivers Enable built-in flux drivers.
geom-drivers Enable built-in detector geometry drivers.
mueloss Muon energy loss modeling.
validation-tools GENIE physics model validation tools.
test Build test programs.
t2k Enable T2K-specific event generation application.
fnal Enable FNAL experiment-specific event generation application.
atmo Enable atmospheric neutrino event generation application.
nucleon-decay Enable nucleon decay event generation application.
rwght Enable event reweighting tools.
masterclass Enable GENIE neutrino masterclass application.

B.5. CONFIGURING GENIE 239

with options for 3rd party software
prefix with --with (eg. --with-lhapdf-lib=/some/path)

optimiz-level Compiler optimiz. level (O,O2,O3,OO,Os)
profiler-lib Path to profiler library
doxygen-path Path to doxygen binary
pythia6-lib Path to PYTHIA6 library
cern-lib Path to CERN libraries
lhapdf-inc Path to LHAPDF includes
lhapdf-lib Path to LHAPDF libraries
libxml2-inc Path to libxml2 includes
libxml2-lib Path to libxlm2 library
log4cpp-inc Path to log4cpp includes
log4cpp-lib Path to log4cpp library

By default all options required for a minimal installation that can be used for physics event generation
are enabled and non-essential features are disabled. Typically, the folowing should be sufficient for most
users:

$ cd $GENIE
$./configure

Not specifying any configuration option (like above) is equivalent to specifying:
--disable-profiler
--disable-doxygen-doc
--enable-dylibversion
--disable-lowlevel-mesg
--disable-debug
--enable-lhapdf
--disable-cernlib
--enable-flux-drivers
--enable-geom-drivers
--enable-mueloss
--disable-validation-tools
--disable-test
--disable-t2k
--disable-fnal
--disable-atmo
--disable-nucleon-decay
--disable-rwght
--disable-masterclass

The default optimization level is set to O2 and --prefix is set to /usr/local.

The configuration script can, in principle, auto-detect the paths to required external packages installed at
your system if no path is given explicitly. On some occasions, before scanning your system for external
products, the configuration script will check whether some rather standard environmental variables have
been set (from example, before searching for the PYTHIA6 / JETSET library, the configure script will
check whether a ‘PYTHIA6’ environmental variable has been set. See ‘./configure --help’ for more infor-
mation).

240 APPENDIX B. DOWNLOADING & INSTALLING GENIE

Obviously, if you want greater control over the configuration options (so that you do not depend on
pre-set defaults that may one day change), if you want to modify some other default options or if the
script fails to discover some external product path, then do set the configure script options explicitly.

B.6 Building GENIE
Once GENIE has been properly configured, you are ready to build it. Just type:

$ cd $GENIE
$ gmake

On successful completion you should be able to find many libraries located in $GENIE/lib and some
applications and scripts in $GENIE/bin.

You may stop the building procedure here and start using GENIE now! However, some users may
prefer to take their installation one step further and type:

$ gmake install

If /some/path was the location specified via the --prefix configuration flag, then ‘gmake install’ will:

• move all executables and scripts to /some/path/bin,

• move all libraries to /some/path/lib, and

• move all headers to /some/path/include/GENIE.

If you do run ‘gmake install’, before running GENIE you need to update your ‘LD_LIBRARY_PATH’ (or
‘DYLD_LIBRARY_PATH’ on MAC OS X) and ‘PATH’ environmental variables accordingly.

Whether you stop the installation procedure after the ‘gmake’ or ‘gmake install’ step is probably more a
matter of personal taste 6. Whatever you choose should work given that your system’s paths have been
properly set.

Assuming now that the GENIE installation has been completed without apparent errors, we are go-
ing to provide instructions for a couple of simple post-installation tests to verify that GENIE has been
properly built.

B.7 Performing simple post-installation tests
Here are few simple things you can do in order to try out your installation:

1. Generate a νµ + O16 (νµ PDG code: 14, O16 PDG code: 1000080160) event sample (10k events)
between 0 and 10 GeV, using a simple histogram-based description of the T2K νµ flux (ROOT
TH1D object ‘h30000’ stored in ‘$GENIE/data/flux/t2kflux.root ’). Use pre-calculated cross-sections
(later, you will learn how to calculate these on your own) which can be downloaded from http:
//www.hepforge.org/archive/genie/data/.

6I find it easier to manage multiple GENIE installations if I stop after the ‘gmake’ step.

http://www.hepforge.org/archive/genie/data/
http://www.hepforge.org/archive/genie/data/

B.7. PERFORMING SIMPLE POST-INSTALLATION TESTS 241

The commands used here will be explained in the next section:

$ gevgen -n 10000 -p 14 -t 1000080160 -e 0,10 --run 100
-f $GENIE/data/flux/t2kflux.root,h30000
--seed 2989819 --cross-sections /some/path/xsec.xml

A ‘genie-mcjob-<run number>.status’ status file is created. It is updated periodicaly with job statis-
tics and the most recent event dump. When the job is completed a ‘gntp.<run number>.ghep.root ’
file, containing the generated event tree, is written-out. To print-out the first 200 events from the
event file you just generated, type:
$ gevdump -f gntp.100.ghep.root -n 200

2. Generate a 10,000 event sample of π+ +O16interactions for π+’s of 200 MeV kinetic energy.
(π+ PDG code: 211, O16 PDG code: 1000080160):

$ gevgen_hadron -n 10000 -p 211 -t 1000080160 -k 0.2 --seed 9839389

If everything seems to work then the GENIE is really ‘out of the bottle’. Continue reading the Physics
and User Manual to find out more about running the GENIE applications bundled in your installation.

242 APPENDIX B. DOWNLOADING & INSTALLING GENIE

Appendix C

Special Topics, FAQs and
Troubleshooting

C.1 Installation / Versioning

C.1.1 Making user-code conditional on the GENIE version

User-code can be made conditional upon the GENIE version number, in similar way as with ROOT, by
including ‘$GENIE/src/Conventions/GVersion.h’. This header file is automatically generated during the
GENIE installation. If, for example, one wishes to do something different before / after version 2.16.22,
then simply type:

#if __GENIE_RELEASE_CODE__ >= GRELCODE(2,16,22)
...
<your code here>
...
#else
...
<your code here>
...
#endif

C.2 Software framework

C.2.1 Calling GENIE algorithms directly

GENIE provides a host of event generation applications and utilities and most users will only ever interact
with these. It is only for the most advanced GENIE uses-cases that one may need to access and run
algorithms directly. This is typically a 4-step process, as outlined below:

1. Get an algorithm factory (AlgFactory) instance. The algorithm factory provides access to config-
ured instances of all GENIE algorithms.

AlgFactory * algf = AlgFactory::Instance();

243

244 APPENDIX C. SPECIAL TOPICS, FAQS AND TROUBLESHOOTING

2. Request a concrete algorithm from the factory. Each algorithm is uniquely specified by its name
and the name of its configuration parameter set.

const Algorithm * alg_base = algf->GetAlgorithm(“name”, “config”);

3. Type-cast Algorithm to the specific algorithmic interface (XyzI) being implemented. For example,
for cross section algorithms type-cast to XSecAlgorithmI, for hadronization models to Hadroniza-
tionModelI, for strucrure function models to DISStructureFuncModelI, for event generation modules
to EventRecordVisitorI etc (please consult the GENIE doxygen code reference for a full list of pos-
sibilities).

const XzyI * alg = dynamic_cast<const XyzI *>(alg_base);

4. Prepare the algorithm inputs and run it (please consult GENIE doxygen code reference for docu-
mentation on each algorithmic interface).

Example 1

The following example shows how to get the Rein-Sehgal resonance neutrino-production model, calculate
the differential cross section d2σ/dWdQ2 for νµ+n (bound in Fe56)→ µ−+P11(1440) at Eν =2.4 GeV ,
W=1.35 GeV , Q2=1.1 GeV 2 and then calculate the integrated cross section at the same energy:

{
...

// get the algorithm factory
AlgFactory * algf = AlgFactory::Instance();

// get the cross section algorithm
const Algorithm * algbase =

algf->GetAlgorithm("genie::ReinSeghalRESPXSec", "Default"));
const XSecAlgorithmI * xsec_model =

dynamic_cast<const XSecAlgorithmI *> (algbase);

// prepare the cross section algorithm inputs
Interaction * interaction

= Interaction::RESCC(kPdgTgtFe56,kPdgNeutron,kPdgNuMu);
interaction->InitStatePtr()->SetProbeE(2.4);
interaction->KinePtr()->SetW(1.35);
interaction->KinePtr()->SetQ2(1.1);
interaction->ExclTagPtr()->SetResonance(kP11_1440);

// calculate d2sigma/dWdQ2 differential cross section
// (in 1E-38 cm^2 / GeV^3)
double diff_xsec = xsec_model->XSec(

interaction, kPSWQ2fE) / (1E-38 * units::cm2);

C.3. PARTICLE DECAYS 245

// get the integrated cross section
// (in 1E-38 cm^2)
double intg_xsec = xsec_model->Integral(

interaction) / (1E-38 * units::cm2);

...
}

C.3 Particle decays

C.3.1 Deciding which particles to decay

GENIE attempts to simulate the complex physics within the nuclear environment and, by default, it
considers that every particle which escapes the target nucleus has left its realm. It is the responsibility
of the detector simulation to handle particles that propagate more than a few fermis before decaying.
GENIE, for example, in its default mode, will not decay charmed hadrons. If, like many others, you think
that these are “short-lived” particles GENIE ought to decay then consider this: If a C12 nucleus was as
big as the Earth, then these particles would decay more than a light year away (cτ0(Λ+

c)/(C12radius) ∼
2 × 1010, cτ0(Ds)/(C

12radius) ∼ 5 × 1010, etc). Similarly, GENIE won’t decay τ leptons. The default
GENIE settings are appropriate as we do not want to be making any assumption regarding the user’s
detector technology and its ability to detect these short tracks. (Decaying τ leptons is obviously not
desirable for an emulsion detector.) By default, GENIE does not inhibit any kinematically allowed
channel. Users can modify these options (see next chapter).

C.3.2 Setting particle decay flags

The default particle decay flag choices were described in the previous chapter. One can easily override the
default GENIE choices by setting a series of “DecayParticleWithCode=i” flags at the ‘$GENIE/config/UserPhysicsOptions.xml’
configuration file, where i is the particle’s PDG code.

For example, to enable decays of τ− leptons (PDG code = 15), one needs to change:
<param type=”bool” name=”DecayParticleWithCode=15”> false </param>

to:
<param type=”bool” name=”DecayParticleWithCode=15”> true </param>

C.3.3 Inhibiting decay channels

By default, GENIE does not inhibit any kinematically allowed channel. However, for certain studies,
a user may wish to inhibit certain uninteresting decay channels in order to speed up event generation.
This can be done by setting a series of “InhibitDecay/Particle=i,Channel=j” configuration options at
the ‘$GENIE/config/UserPhysicsOptions.xml’ file, where i is the particle’s PDG code and j the decay
channel ID. To figure out the decay channel code numbers use the print_decay_channels.C script in
‘$GENIE/src/contrib/misc/’ (GENIE uses the ROOT ‘TDecayChannel ’ IDs).

For example, to inbibit the τ− lepton (PDG code = 15) τ− → ντe
−ν̄e decay channel (decay channel

ID = 0), one needs to type:

246 APPENDIX C. SPECIAL TOPICS, FAQS AND TROUBLESHOOTING

<param type=”bool” name=InhibitDecay/Particle=15,Channel=0”> true </param>

C.4 Numerical algorithms

C.4.1 Random number periodicity
GENIE is using ROOT’s Mersenne Twistor random number generator with periodicity of 106000. See the
ROOT TRandom3 class for details. In addition GENIE is structured to use several random number gen-
erator objects each with its own "independent" random number sequence (see discussion in ROOT TRan-
dom class description). GENIE provides different random number generators for different types of GENIE
modules: As an example, RandomGen::RndHadro() returns the generator to by used in hadronization
models, RandomGen::RndDec() returns the generator to be used by decayers, RandomGen::RndKine()
returns the generator to be used by kinematics generators, RandomGen::RndFsi() returns the generator
to be used by intranuclear rescattering MCs and so on... (see RandomGen for the list of all generators).
This is an option reserved for the future as currently all modules are passed the same random number
generator (no problems with the generator periodicity have been found or reported so far).

C.4.2 Setting required numerical accurancy
...

Appendix D

Common Status and Particle Codes

D.1 Status codes

Description GHepStatus_t As int

Undefined kIStUndefined -1

Initial state kIStInitialState 0

Stable final state kIstStableFinalState 1

Intermediate state kIStIntermediateState 2

Decayed state kIStDecayedState 3

Nucleon target kIStNucleonTarget 11

DIS pre-fragm. hadronic state kIStDISPreFragmHadronicState 12

Resonant pre-decayed state kIStPreDecayResonantState 13

Hadron in the nucleus kIStHadronInTheNucleus 14

Final state nuclear remnant kIStFinalStateNuclearRemnant 15

Nucleon cluster target kIStNucleonClusterTarget 16

D.2 Particle codes

See PDG ‘Monte Carlo Particle Numbering Scheme’ for a complete list.http://pdg.lbl.gov/2008/
mcdata/mc_particle_id_contents.shtml

247

http://pdg.lbl.gov/2008/mcdata/mc_particle_id_contents.shtml
http://pdg.lbl.gov/2008/mcdata/mc_particle_id_contents.shtml

248 APPENDIX D. COMMON STATUS AND PARTICLE CODES

νe (ν̄e) 12 (-12) p 2212 π0 111 uu (s = 1) 2203 g 21

νµ (ν̄µ) 14 (-14) n 2112 π+ (π−) 211 (-211) ud (s = 0) 2101 γ 22

ντ (ν̄τ) 16 (-16) Λ0 3122 ρ0 113 ud (s = 1) 2103 Z0 23

e− (e+) 11 (-11) Σ+ 3222 ρ+ (ρ−) 213 (-213) su (s = 0) 3201 W+ (W−) 24 (-24)

µ− (µ+) 13 (-13) Σ0 3212 η 221 su (s = 1) 3203

τ− (τ+) 15 (-15) Σ− 3112 η′ 331 sd (s = 0) 3101

d (d̄) 1 (-1) Ξ0 3322 ω 223 sd (s = 1) 3103

u (ū) 2 (-2) Ξ− 3312 φ 333 ss (s = 1) 3303

s (s̄) 3 (-3) Ω− 3332 ηc 441

c (c̄) 4 (-4) Λ+
c 4122 J/ψ 443

b (b̄) 5 (-5) Σ0
c 4112 K0 (K̄0) 311 (-311)

t (t̄) 6 (-6) Σ+
c 4212 K+ (K−) 321 (-321)

Σ++
c 4222 K0

L 130

Ξ0
c 4132 K0

S 310

Ξ+
c 4232 D0 (D̄0) 421 (-421)

Ω0
c 4332 D+ (D−) 411 (-411)

D+
s (D−s) 431 (-431)

D.3. BARYON RESONANCE CODES 249

D.3 Baryon resonance codes

P33(1232); ∆− 1114 S11(1650); N0 32112 D13(1700); N0 21214 P31(1910); ∆− 21112

P33(1232); ∆0 2114 S11(1650); N+ 32212 D13(1700); N+ 22124 P31(1910); ∆0 21212

P33(1232); ∆+ 2214 D15(1675); N0 2116 P11(1710); N0 42112 P31(1910); ∆+ 22122

P33(1232); ∆++ 2224 D15(1675); N+ 2216 P11(1710); N+ 42212 P31(1910); ∆++ 22222

P11(1440); N0 12112 F15(1680); N0 12116 P13(1720); N0 31214 P33(1920); ∆− 21114

P11(1440); N+ 12212 F15(1680); N+ 12216 P13(1720); N+ 32124 P33(1920); ∆0 22114

D13(1520); N0 1214 D33(1700); ∆− 11114 F35(1905); ∆− 1116 P33(1920); ∆+ 22214

D13(1520); N+ 2124 D33(1700); ∆0 12114 F35(1905); ∆0 1216 P33(1920); ∆++ 22224

S11(1535); N0 22112 D33(1700); ∆+ 12214 F35(1905); ∆+ 2126 F37(1950); ∆− 1118

S11(1535); N+ 22212 D33(1700); ∆++ 12224 F35(1905); ∆++ 2226 F37(1950); ∆0 2118

S31(1620); ∆− 11112 F37(1950); ∆+ 2218

S31(1620); ∆0 1212 F37(1950); ∆++ 2228

S31(1620); ∆+ 2122

S31(1620); ∆++ 2222

D.4 Ion codes
GENIE has adopted the standard PDG (2006) particle codes. For ions it has adopted a PDG extension,
using the 10-digit code 10LZZZAAAI where AAA is the total baryon number, ZZZ is the total charge, L
is the number of strange quarks and I is the isomer number (I=0 corresponds to the ground state).

So, for example:

1000010010 → H1

1000060120 → C12 :
1000080160 → O16 :
1000260560 → Fe56 :

and so on.

D.5 GENIE pseudo-particle codes
GENIE-specific pseudo-particles have PDG codes >= 2000000000.

250 APPENDIX D. COMMON STATUS AND PARTICLE CODES

Appendix E

3rd Party Softw. Installation
Instructions

The following dependencies need to be installed, in the following order.

E.1 LOG4CPP

Before installing log4cpp Check whether log4cpp is already installed at your system. The library
filename contains liblog4cpp, so if you cannot find a file with a filename containing liblog4cpp, then you
probably do not have the software installed.

Getting the source code Download the source code from the sourceforge anonymous CVS repository
(when prompted for a password, simply hit enter):
$ cd /dir/for/external/src/code
$ cvs -d :pserver:anonymous@log4cpp.cvs.sourceforge.net:/cvsroot/log4cpp login
$ cvs -d :pserver:anonymous@log4cpp.cvs.sourceforge.net:/cvsroot/log4cpp -z3 co log4cpp

Configuring and building Enter the log4cpp directory and run ‘autogen’ and ‘configure’. Replace
[location] with the installation directory of your choice; you cannot install it in the same directory as the
source (where you are now). You can choose not to use the ‘--prefix’ tag, in which case the default
install directory is ‘/usr/local ’.
$ cd log4cpp
$./autogen.sh
$./configure --prefix=[location]

What’s left is to run ‘make’ and ‘make install’. If make install gives you an error while copying or
moving files stating that the files are identical, then you probably choose the source folder as your in-
stall folder in the above configure step. Rerun configure with a different location (or simply leave the
‘--prefix’ option out for the default).
$ make
$ make install

Notes:

• Alternatively, you may install pre-compiled binaries. For example, if you are using ‘yum’ on LINUX
then just type:

251

252 APPENDIX E. 3RD PARTY SOFTW. INSTALLATION INSTRUCTIONS

$ yum install log4cpp
On MAC OS X you can do the same using ‘DarwinPorts’:
$ sudo port install log4cpp

E.2 LIBXML2

Before installing libxml2 Check whether libxml2 is already installed at your system - most likely
it is. Look for a libxml2.* library (typically in ‘/usr/lib’) and for a libxml2 include folder (typically in
‘/usr/include’).

Getting the source code Download the source code from the GNOME subversion repository:
$ cd /dir/for/external/src/code
$ svn co https://svn.gnome.org/svn/libxml2/trunk libxml2

Alternatively, you download the code as a gzipped tarball from:
http://xmlsoft.org/downloads.html.

Configuring and building $ cd libxml2
$./autogen.sh --prefix=[location]
$ make
$ make install

Notes:

• Alternatively, you may install pre-compiled binaries. For example, if you are using ‘yum’ on LINUX
then just type:
$ yum install libxml2
On MAC OS X you can do the same using ‘DarwinPorts’:
$ sudo port install libxml2

E.3 LHAPDF5

Getting the source code Get the LHAPDF code (and PDF data files) from http://projects.hepforge.org/lhapdf/.
The tarball corrsponding to version ‘x.y.z’ is named ‘lhapdf-x.y.z.tar.gz ’.
$ mv lhapdf-x.y.z.tar.gz /dir/for/external/src/code
$ cd /directory/to/download/external/code
$ tar xzvf lhapdf-x.y.z.tar.gz

Configuring and building $ cd lhapdf-x.y.z/
$./configure --prefix=[location]
$ make
$ make install

E.4. PYTHIA6 253

E.4 PYTHIA6
Installation of PYTHIA6 is simplified by using a script provided by Robert Hatcher (‘build_pythia6.sh’).
The file is included in the GENIE source tree (see ‘$GENIE/src/scripts/build/ext/build_pythia6.sh’). You
can also get a copy from the web1:

You can run the script (please, also read its documentation) as:
$ source build_pythia6.sh [version]

For example, in order to download and install version 6.4.12, type:
$ source build_pythia6.sh 6412

E.5 ROOT
Getting the source code Get the source code from the ROOT subversion repository. To get the
development version, type:
$ cvs co http://root.cern.ch/svn/root/trunk root
To get a specific version ‘x.y.z ’, type:
$ cvs co http://root.cern.ch/svn/root/tags/vx-y-z root
$ cvs co http://root.cern.ch/svn/root/tags/v5-22-00 root

See http://root.cern.ch/drupal/content/downloading-root/

Configuring and building $ export ROOTSYS=/path/to/install_root
$ cd $ROOTSYS
$./configure [arch] [other options] --enable-pythia6 --with-pythia6-libdir=$PYTHIA6 --enable-mathmore
$ make

Testing Accessing root is an easy test to see if it has installed correctly. If you are not familiar with
root, use “.q” in root prompt to quit.

$ root -l

root [0] .q

See http://root.cern.ch/root/Install.html for more information on installing ROOT from source.

1Visit: http://projects.hepforge.org/genie/trac/browser/trunk/src/scripts/build/ext/
Click on the file and then download it by clicking on ‘Download in other formats / Original format’ towards the end of the
page.

254 APPENDIX E. 3RD PARTY SOFTW. INSTALLATION INSTRUCTIONS

Appendix F

Finding More Information

F.1 The GENIE web page

The GENIE web page, hosted at HepForge is the exclusive official source of information on GENIE. The
page can be reached at http://www.genie-mc.org

F.2 Subscribing at the GENIE mailing lists

The GENIE mailing lists are hosted at JISCmail, UK’s National Academic Mailing List Service. We
currently maintain two mailing lists

• neutrino-mc-support@jiscmail.ac.uk : This is the GENIE support mailing list and is open to all
users.

• neutrino-mc-core@jiscmail.ac.uk : This is the GENIE developers mailing list and is open only to
members of the GENIE collaboration.

To register at the GENIE support mailing list go to
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=NEUTRINO-MC-SUPPORT
(or follow the link the GENIE web page) and click on ‘Join or Leave NEUTRINO-MC-SUPPORT’. In
the registration page specify your name, preferred e-mail address and subscription type and click on ‘Join
NEUTRINO-MC-SUPPORT’. This will generate a request that has to be approved by a member of the
GENIE collaboration. Upon approval a notification and the JISCmail Data Protection policy will be
forwarded at your nominated e-mail address.

F.3 The GENIE document database (DocDB)

The GENIE internal note repository is hosted at Fermilab at the Projects Document Database. Most
documents are internal to the GENIE collaboration. However certain documents are made publicly
available. The Fermilab Projects Documents Database can be reached at:
http://projects-docdb.fnal.gov:8080/cgi-bin/ListBy?groupid=30

255

256 APPENDIX F. FINDING MORE INFORMATION

F.4 The GENIE issue tracker
The issue tracker hosted at HepForge is a useful tool for monitoring tasks and milestones, for submitting
bug reports and getting information about their resolution. It is available at:
http://projects.hepforge.org/genie/trac/report/

Non-developers can also submit tickets. A general ‘guest’ account has been setup (the password is
available upon request).

F.5 The GENIE Generator repository browser
http://projects.hepforge.org/genie/trac/browser/generator

F.6 The GENIE doxygen documentation
http://doxygen.genie-mc.org/

Appendix G

Glossary

• A

– AGKY: A home-grown neutrino-induced hadronic multiplarticle production model developed
by C.Andreopoulos, H.Gallagher, P.Kehayias and T.Yang.

• B

– BGLRS: An atmospheric neutrino simulation developed by G. Barr, T.K. Gaisser, P. Lipari,
S. Robbins and T. Stanev.

– BS: Berger-Sehgal

– BY: Bodek-Yang.

• C

– CMC: Comprehensive Model Configuration.

• D

– DIS: Deep Inelastic Scattering.

• E

• F

– FGM: Fermi Gas Model.

– FLUKA:

• G

– GEF: Geocentric Earth-Fixed Coordinate System (+z: Points to North Pole / xy: Equatorial
plane / +x: Points to the Prime Meridian / +y: As needed to make a right-handed coordinate
system).

– Geant4:

– GDML:

– GENEVE: A legacy, fortran77-based neutrino generator by F.Cavanna et al.

257

258 APPENDIX G. GLOSSARY

– GENIE: Generates Events for Neutrino Interaction Experiments.

– GiBUU: A fortran2003-based state-of-the-art particle transport simulation using the Boltzmann-
Uehling-Uhlenbeck (BUU) framework. Developed primarily by the theory group at Giessen
University (U.Mosel et al.)

– GNuMI: Geant3- and Geant4-based NuMI beamline simulation software.

– GSL: GNU Scientific Library

– gevdump: A GENIE application for printing-out event records.

– gevpick: A GENIE event topology cherry-picking application.

– gevgen: A simple, generic GENIE event generation application.

– gevgen_hadron: A GENIE hadron+nucleus event generation application.

– gevgen_atmo: A GENIE event generation application for atmospheric neutrinos.

– gevgen_ndcy: A GENIE nucleon decay event generation application.

– gevgen_t2k: A GENIE event generation application customized for T2K.

– gevgen_fnal: A GENIE event generation application customized for the NuMI beamline ex-
periments.

– gmkspl: A GENIE application for generating cross section spline files (evet generation inputs).

– gntpc: A GENIE ntuple conversion application.

– gspladd: A GENIE XML cross section spline file merging application.

– gspl2root: A GENIE XML to ROOT cross section spline file conversion utility.

– gevgen_numi: Alias for gevgen_fnal maintained for historical reasons.

• H

– hA: See INTRANUKE.

– hN: See INTRANUKE.

• I

– IMD: Inverse Muon Decay

– INTRANUKE: A home-grown intranuclear hadron transport MC. Intranuke was initially de-
veloped within NEUGEN for the Soudan-2 experiment by W.A.Mann, R.Merenyi, R.Edgecock,
H.Gallagher, G.F.Pearce and others. Since then it was significantly improved and is now ex-
tensively used by MINOS and other experiments. Current INTRANUKE development is led
by S.Dytman. INTRANUKE, in fact, contains two independent models (called ‘hN’ and ‘hA’).

• J

– JNUBEAM: Geant3-based JPARC neutrino beamline simulation software.

– JPARC: Japan Proton Accelerator Research Complex. Home of T2K neutrino beamline.

• K

– KNO: Koba, Nielsen and Olesen scaling law.

• L

259

– LHAPDF: Les Houches Accord PDF Interface.
– libxml2: The XML C parser and toolkit of Gnome (see http://xmlsoft.org).
– log4cpp: A library of C++ classes for fleible loggingto files, syslog, IDSA and other destina-

tions (see http://log4cpp.sourceforge.net).

• M

– MacPorts: An open-source community initiative to design an easy-to-use system for compil-
ing, installing, and upgrading either command-line, X11 or Aqua based open-source software
on the Mac OS X operating system.

– Mersenne Twistor: The default random number generator in GENIE (via ROOT TRandom3
whose implementation is based on M. Matsumoto and T. Nishimura, Mersenne Twistor: A 623-
diminsionally equidistributed uniform pseudorandom number generator ACM Transactions on
Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3–30.)

• N

– NeuGEN: A legacy, fortran77-based neutrino generator by H.Gallagher et al.
– NEUT: A legacy, fortran77-based neutrino generator by Y.Hayato et al.
– NUANCE: A legacy, fortran77-based neutrino generator by D.Casper et al.
– NUX: A legacy, fortran77-based neutrino generator by A.Rubbia et al.
– NuMI: Neutrinos at the Main Injector. A neutrino beamline at Fermilab.

• O

• P

– PREM: Preliminary Earth Model, The Encyclopedia of Solid Earth Geophysics, David E.
James, ed., Van Nostrand Reinhold, New York, 1989, p.331

– PYTHIA:

• Q

– QEL: Quasi-Elastic.

• R

– RES: Resonance.
– Registry:
– ROOT:
– RooTracker: A ROOT-only STDHEP-like event format (very similar to GHEP event format

but with no GENIE class dependencies) developed in GENIE as an evolution of the Tracker
format. See also Tracker.

– RS: Rein-Sehgal
– RSD: Remote Software Deployment Tools. A system for automated software installation

developed by Nick West (Oxford).

• S

260 APPENDIX G. GLOSSARY

– SVN: See Subversion.

– SKDETSIM: The fortran77-based Super-Kamiokande detector simulation.

– Subversion:

• T

– THZ: Topocentric Horizontal Coordinate System (+z: Points towards the Local Zenith / +x:
On same plane as Local Meridian, pointing South / +y: as needed to make a right-handed
coordinate system / Origin: Detector centre).

– Tracker:

• U

• V

• W

• X

– XML: Extensible Markup Language.

• Y :

– Yum: Yellowdog Updater, Modified (YUM). An open-source command-line package-management
utility for RPM-compatible Linux operating systems.

• Z

Bibliography

[1] C. Andreopoulos et al. http://www.genie-mc.org.

[2] S. Agostinelli et al., “GEANT4: A simulation toolkit,” Nucl. Instrum. Meth., vol. A506, pp. 250–
303, 2003.

[3] M. Bahr et al., “Herwig++ Physics and Manual,” Eur. Phys. J., vol. C58, pp. 639–707, 2008.

[4] T. Sjostrand, S. Mrenna, and P. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput. Phys.
Commun., vol. 178, pp. 852–867, 2008.

[5] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,” Nucl. Instrum.
Meth., vol. A389, pp. 81–86, 1997.

[6] H. Gallagher, “The neugen neutrino event generator,” Nucl. Phys. Proc. Suppl., vol. 112, pp. 188–
194, 2002.

[7] F. Cavanna and O. Palamara, “Geneve: A monte carlo generator for neutrino interactions in the
intermediate-energy range,” Nucl. Phys. Proc. Suppl., vol. 112, pp. 183–187, 2002.

[8] Y. Hayato, “Neut,” Nucl. Phys. Proc. Suppl., vol. 112, pp. 171–176, 2002.

[9] D. Casper, “The nuance neutrino physics simulation, and the future,” Nucl. Phys. Proc. Suppl.,
vol. 112, pp. 161–170, 2002.

[10] A. Rubbia, “Nux-neutrino generator,” Talk at the 1st Workshop on Neutrino-Nucleus Interactions
in the Few-GeV Region (NuINT01), vol. http://neutrino.kek.jp/nuint01/slide/Rubbia.1.pdf, p. 29,
2001.

[11] C. Juszczak, J. A. Nowak, and J. T. Sobczyk, “Simulations from a new neutrino event generator,”
Nucl. Phys. Proc. Suppl., vol. 159, pp. 211–216, 2006.

[12] T. Leitner, L. Alvarez-Ruso, and U. Mosel, “Charged current neutrino nucleus interactions at
intermediate energies,” Phys. Rev., vol. C73, p. 065502, 2006.

[13] A. Fasso et al., “The physics models of FLUKA: Status and recent development,” 2003.

[14] T. Ishida, “Charged-current inclusive distributions from K2K near detectors,” 2002. ,Prepared for
1st Workshop on Neutrino - Nucleus Interactions in the Few GeV Region (NuInt01), Tsukuba,
Japan, 13-16 Dec 2001.

[15] A. A. Aguilar-Arevalo et al., “Measurement of muon neutrino quasi-elastic scattering on carbon,”
Phys. Rev. Lett., vol. 100, p. 032301, 2008.

261

262 BIBLIOGRAPHY

[16] F. Sanchez, “Search for neutrino-induced charged current coherent pion production with carbon in
a 1.3-gev wide band muon neutrino beam,” Nucl. Phys. Proc. Suppl., vol. 155, pp. 239–241, 2006.

[17] A. A. Aguilar-Arevalo et al., “Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino
Beam,” Phys. Rev. Lett., vol. 102, p. 101802, 2009.

[18] E. A. Paschos, A. Kartavtsev, and G. J. Gounaris, “Coherent pion production by neutrinos on
nuclei,” Phys. Rev., vol. D74, p. 054007, 2006.

[19] S. K. Singh, M. Sajjad Athar, and S. Ahmad, “Nuclear effects in neutrino induced coherent pion
production at k2k and miniboone,” Phys. Rev. Lett., vol. 96, p. 241801, 2006.

[20] L. Alvarez-Ruso, L. S. Geng, S. Hirenzaki, and M. J. Vicente Vacas, “Charged current neutrino
induced coherent pion production,” Phys. Rev., vol. C75, p. 055501, 2007.

[21] J. A. Harvey, C. T. Hill, and R. J. Hill, “Anomaly mediated neutrino-photon interactions at finite
baryon density,” Phys. Rev. Lett., vol. 99, p. 261601, 2007.

[22] O. Buss, T. Leitner, U. Mosel, and L. Alvarez-Ruso, “The influence of the nuclear medium on
inclusive electron and neutrino scattering off nuclei,” Phys. Rev., vol. C76, p. 035502, 2007.

[23] O. Benhar, N. Farina, H. Nakamura, M. Sakuda, and R. Seki, “Electron and neutrino nucleus
scattering in the impulse approximation regime,” Phys. Rev., vol. D72, p. 053005, 2005.

[24] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and J. M. Udias, “Final-state
interactions and superscaling in the semi- relativistic approach to quasielastic electron and neutrino
scattering,” Phys. Rev., vol. C75, p. 034613, 2007.

[25] A. Bodek and J. L. Ritchie, “Further studies of fermi motion effects in lepton scattering from nuclear
targets,” Phys. Rev., vol. D24, p. 1400, 1981.

[26] E. J. Moniz et al., “Nuclear fermi momenta from quasielastic electron scattering,” Phys. Rev. Lett.,
vol. 26, pp. 445–448, 1971.

[27] H. De Vries, C. W. De Jager, and C. De Vries, “Nuclear charge and magnetization density distribu-
tion parameters from elastic electron scattering,” Atom. Data Nucl. Data Tabl., vol. 36, pp. 495–536,
1987.

[28] A. Bodek and U. K. Yang, “Higher twist, ξw scaling, and effective LO PDFs for lepton scattering
in the few GeV region,” J. Phys., vol. G29, pp. 1899–1906, 2003.

[29] C. H. Llewellyn Smith, “Neutrino reactions at accelerator energies,” Phys. Rept., vol. 3, p. 261,
1972.

[30] R. G. Sachs, “High-Energy Behavior of Nucleon Electromagnetic Form Factors,” Phys. Rev.,
vol. 126, pp. 2256–2260, 1962.

[31] H. Budd, A. Bodek, and J. Arrington, “Modeling quasi-elastic form factors for electron and neutrino
scattering, hep-ex/0308005,” 2003.

[32] R. Bradford, A. Bodek, H. S. Budd, and J. Arrington, “A new parameterization of the nucleon
elastic form factors,” Nucl. Phys. Proc. Suppl., vol. 159, pp. 127–132, 2006.

[33] L. A. Ahrens et al., “Measurement of Neutrino - Proton and anti-neutrino - Proton Elastic Scat-
tering,” Phys. Rev., vol. D35, p. 785, 1987.

BIBLIOGRAPHY 263

[34] D. Rein and L. M. Sehgal, “Neutrino excitation of baryon resonances and single pion production,”
Ann. Phys., vol. 133, p. 79, 1981.

[35] R. P. Feynman, M. Kislinger, and F. Ravndal, “Current matrix elements from a relativistic quark
model,” Phys. Rev., vol. D3, pp. 2706–2732, 1971.

[36] K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, “Axial masses in quasielastic neutrino
scattering and single-pion neutrinoproduction on nucleons and nuclei,” Acta Phys. Polon., vol. B37,
pp. 2337–2348, 2006.

[37] L. W. Whitlow, S. Rock, A. Bodek, E. M. Riordan, and S. Dasu, “A Precise extraction of R =
σL/σT from a global analysis of the SLAC deep inelastic e p and e d scattering cross-sections,”
Phys. Lett., vol. B250, pp. 193–198, 1990.

[38] M. Gluck, E. Reya, and A. Vogt, “Dynamical parton distributions revisited,” Eur. Phys. J., vol. C5,
pp. 461–470, 1998.

[39] D. Rein and L. M. Sehgal, “Coherent π0 production in neutrino reactions,” Nucl. Phys., vol. B223,
p. 29, 1983.

[40] W. M. Yao et al., “Review of particle physics,” J. Phys., vol. G33, pp. 1–1232, 2006.

[41] D. Rein and L. M. Sehgal, “PCAC and the deficit of forward muons in π+ production by neutrinos,”
Phys. Lett., vol. B657, pp. 207–209, 2007.

[42] E. Bertuzzo, S. Jana, P. A. N. Machado, and R. Zukanovich Funchal, “Dark Neutrino Portal to
Explain MiniBooNE Excess,” Phys. Rev. Lett., vol. 121, p. 241801, Dec 2018.

[43] P. Adamson et al., “A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector
Neutrino Beam,” Phys. Rev., vol. D77, p. 072002, 2008.

[44] K. Hiraide, “Measurement of Charged Current Charged Single Pion Production in SciBooNE,”
2008.

[45] M. C. Sanchez, “Electron neutrino appearance in the MINOS experiment,” AIP Conf. Proc.,
vol. 981, pp. 148–150, 2008.

[46] T. Sjostrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual,” JHEP, vol. 05, p. 026,
2006.

[47] C. Andreopoulos, “The GENIE universal, object-oriented neutrino generator,” Acta Phys. Polon.,
vol. B37, pp. 2349–2360, 2006.

[48] Z. Koba, H. B. Nielsen, and P. Olesen, “Scaling of multiplicity distributions in high-energy hadron
collisions,” Nucl. Phys., vol. B40, pp. 317–334, 1972.

[49] W. Wittek et al., “Production of pi0 mesons and charged hadrons in anti- neutrino neon and
neutrino neon charged current interactions,” Z. Phys., vol. C40, p. 231, 1988.

[50] D. Zieminska et al., “Charged particle multiplicity distributions in neutrino n and neutrino p charged
current interactions,” Phys. Rev., vol. D27, pp. 47–57, 1983.

[51] S. Barlag et al., “CHARGED HADRON MULTIPLICITIES IN HIGH-ENERGY anti-muon neu-
trino n AND anti-muon neutrino p INTERACTIONS,” Zeit. Phys., vol. C11, p. 283, 1982.

264 BIBLIOGRAPHY

[52] M. Derrick et al., “Properties of the Hadronic System Resulting from anti- Muon-neutrino p Inter-
actions,” Phys. Rev., vol. D17, p. 1, 1978.

[53] A. M. Cooper-Sarkar, “Hadron final state results from BEBC,” 1982. Invited talk presented at
Neutrino ’82, Balatonfured, Hungary, Jun 14-19, 1982.

[54] A. B. Clegg and A. Donnachie, “A description of jet structure by pT limited phase space,” Zeit.
Phys., vol. C13, p. 71, 1982.

[55] H. Grassler et al., “Multiplicities of secondary hadrons produced in neutrino p and anti-neutrino p
charged current interactions,” Nucl. Phys., vol. B223, p. 269, 1983.

[56] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, “Parton Fragmentation and String
Dynamics,” Phys. Rept., vol. 97, pp. 31–145, 1983.

[57] P. Allen et al., “Multiplicity distributions in neutrino - hydrogen interactions,” Nucl. Phys.,
vol. B181, p. 385, 1981.

[58] A. Bodek and U. K. Yang, “Modeling neutrino and electron scattering cross sections in the few gev
region with effective lo pdfs,” 2003.

[59] A. A. Ivanilov et al., “Inclusive γ and π0 production in neutrino A and anti-neutrino A interacions
up to 30 GeV,” Yad. Fiz., vol. 41, pp. 1520–1534, 1985.

[60] D. Allasia et al., “Fragmentation in neutrino and anti-neutrino charged current interactions on
proton and neutron,” Z. Phys., vol. C24, pp. 119–131, 1984.

[61] J. P. Berge et al., “Inclusive Negative Hadron Production from High-Energy anti-neutrino Nucleus
Charged Current Interactions,” Phys. Rev., vol. D18, p. 3905, 1978.

[62] V. Ammosov et al., “A study of semi-inclusince gamma production in charged current anti-neutrino
- nucleon interactions,” Nuovo Cim., vol. A51, p. 539, 1979.

[63] D. Drakoulakos et al., “Proposal to perform a high-statistics neutrino scattering experiment using
a fine-grained detector in the numi beam,” 2004.

[64] P. Bosetti et al., “Strange particle production in neutrino and anti-neutrino neon interactions,”
Nucl. Phys., vol. B209, p. 29, 1982.

[65] N. J. Baker et al., “Strange particle production in neutrino - neon charged current interactions,”
Phys. Rev., vol. D34, pp. 1251–1264, 1986.

[66] D. DeProspo et al., “Neutral strange particle production in neutrino and anti-neutrino charged
current interactions on neon,” Phys. Rev., vol. D50, pp. 6691–6703, 1994.

[67] M. Derrick et al., “Hadron production mechanisms in anti-neutrino - proton charged current inter-
actions,” Phys. Rev., vol. D24, p. 1071, 1981.

[68] D. S. Baranov et al., “An estimate for the formation length of hadrons in neutrino interactions,”
PHE 84-04, 1984.

[69] R. Merenyi et al., “Determination of pion intranuclear rescattering rates in νµ Ne versus νµ D
interactions for the atmospheric neutrino flux,” Phys. Rev., vol. D45, pp. 743–751, 1992.

[70] G. D. Harp, “Extension of the isobar model for intranuclear cascades to 1 GeV,” Phys. Rev., vol. C10,
pp. 2387–2396, 1974.

BIBLIOGRAPHY 265

[71] S. G. Mashnik, A. J. Sierk, K. K. Gudima, M. I. Baznat, and N. V. Mokhov LANL Report LA-UR-
05-7321 (2005), RSICC Code Package PSR-532.

[72] S. G. Mashnik, A. J. Sierk, K. K. Gudima, and M. I. Baznat, “CEM03 and LAQGSM03: New
modeling tools for nuclear applications,” J. Phys. Conf. Ser., vol. 41, pp. 340–351, 2006.

[73] S.G.Mashnik, “Private communication,”

[74] A. Engel, W. Cassing, U. Mosel, M. Schafer, and G. Wolf, “Pion - nucleus reactions in a microscopic
transport model,” Nucl. Phys., vol. A572, pp. 657–681, 1994.

[75] G. Battistoni et al., “The FLUKA code: Description and benchmarking,” AIP Conf. Proc., vol. 896,
pp. 31–49, 2007.

[76] L. L. Salcedo, E. Oset, M. J. Vicente-Vacas, and C. Garcia-Recio, “COMPUTER SIMULATION
OF INCLUSIVE PION NUCLEAR REACTIONS,” Nucl. Phys., vol. A484, p. 557, 1988.

[77] D. Ashery et al., “True absorption and scattering of pions on nuclei,” Phys. Rev., vol. C23, pp. 2173–
2185, 1981.

[78] I. Navon et al., “True absorption and scattering of 50 MeV pions,” Phys. Rev., vol. C28, p. 2548,
1983.

[79] C. H. Q. Ingram et al., “Measurement of quasielastic scattering of pions from O16 at energies around
the ∆(1232) resonance,” Phys. Rev., vol. C27, pp. 1578–1601, 1983.

[80] J. D. Zumbro et al., “Inclusive scattering of 500-MeV pions from carbon,” Phys. Rev. Lett., vol. 71,
pp. 1796–1799, 1993.

[81] B. Kotlinski et al., “Pion absorption reactions on N, Ar and Xe,” Eur. Phys. J., vol. A9, pp. 537–552,
2000.

[82] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, “Extended Partial-Wave Analysis
of piN Scattering Data,” Phys. Rev., vol. C74, p. 045205, 2006.

[83] G. web site http://gwdac.phys.gwu.edu.

[84] S. G. Mashnik, R. J. Peterson, A. J. Sierk, and M. R. Braunstein, “Pion induced transport of pi
mesons in nuclei,” Phys. Rev., vol. C61, p. 034601, 2000.

[85] A. S. Carroll et al., “Pion-Nucleus Total Cross-Sections in the (3,3) Resonance Region,” Phys. Rev.,
vol. C14, pp. 635–638, 1976.

[86] A. S. Clough et al., “Pion-Nucleus Total Cross-Sections from 88-MeV to 860- MeV,” Nucl. Phys.,
vol. B76, p. 15, 1974.

[87] W. Bauhoff At. Data and Nucl. Data Tables, vol. 35, p. 429, 1986.

[88] K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, “How to sum contributions into the total
charged-current neutrino nucleon cross section, hep-ph/0511308,” 2005.

[89] D. MacFarlane et al., “Nucleon Structure Functions from High-Energy Neutrino Interactions with
Iron and QCD Results,” Z. Phys., vol. C26, pp. 1–12, 1984.

[90] J. P. Berge et al., “Total neutrino and anti-neutrino charged current cross section measurements in
100 GeV, 160 GeV and 200 GeV narrow band beams,” Z. Phys., vol. C35, p. 443, 1987.

266 BIBLIOGRAPHY

[91] S. Ciampolillo et al., “Total cross section for neutrino charged current interactions at 3 GeV and 9
GeV,” Phys. Lett., vol. B84, p. 281, 1979.

[92] D. C. Colley et al., “Cross sections for charged current neutrino and anti-neutrino interactions in
the energy range 10 GeV to 50 GeV,” Zeit. Phys., vol. C2, p. 187, 1979.

[93] P. Bosetti et al., “Total cross sections for muon-neutrino and anti-muon- neutrino charged current
interactions between 20 GeV and 200 GeV,” Phys. Lett., vol. B110, p. 167, 1982.

[94] A. I. Mukhin et al., “Energy dependence of total cross section for neutrino and anti-neutrino inter-
actions at energies below 35 GeV,” Sov. J. Nucl. Phys., vol. 30, p. 528, 1979.

[95] D. S. Baranov et al., “Measurements of the νµN total cross section at 2 GeV - 30 GeV in SKAT
neutrino experiment,” Phys. Lett., vol. B81, p. 255, 1979.

[96] S. J. Barish et al., “Study of Neutrino Interactions in Hydrogen and Deuterium: Inelastic Charged
Current Reactions,” Phys. Rev., vol. D19, p. 2521, 1979.

[97] N. J. Baker et al., “Total cross sections for νµn and ν̄µp charged current interactions in the 7-ft
bubble chamber,” Phys. Rev., vol. D25, pp. 617–623, 1982.

[98] T. Eichten et al., “Measurement of the neutrino - nucleon anti-neutrino - nucleon total cross sec-
tions,” Phys. Lett., vol. B46, pp. 274–280, 1973.

[99] W. Lerche et al., “Experimental Study of the Reaction νµp → µ−pπ+. GARGAMELLE Neutrino
Propane Experiment,” Phys. Lett., vol. B78, pp. 510–514, 1978.

[100] V. V. Ammosov et al., “Study of the reaction νµp → µ−∆++ at energies 3 GeV to 30 GeV,” Sov.
J. Nucl. Phys., vol. 50, pp. 67–69, 1989.

[101] H. J. Grabosch et al., “Cross section measurements of single pion production in charged current
neutrino and anti-neutrino interactions,” Z. Phys., vol. C41, p. 527, 1989.

[102] J. Bell et al., “Cross section measurements for the reactions νµp → µ−π+p and νµp → µ−K+p at
high energies,” Phys. Rev. Lett., vol. 41, p. 1008, 1978.

[103] T. Kitagaki et al., “Charged current exclusive pion production in neutrino deuterium interactions,”
Phys. Rev., vol. D34, pp. 2554–2565, 1986.

[104] P. Allen et al., “Single π+ production in charged current neutrino - hydrogen interactions,” Nucl.
Phys., vol. B176, p. 269, 1980.

[105] P. Allen et al., “A study of single meson production in neutrino and anti-neutrino charged current
interactions on protons,” Nucl. Phys., vol. B264, p. 221, 1986.

[106] D. Allasia et al., “Investigation of exclusive channels in neutrino / anti-neutrino deuteron charged
current interactions,” Nucl. Phys., vol. B343, pp. 285–309, 1990.

[107] J. Campbell et al., “Study of the reaction νµp → µ−π+p,” Phys. Rev. Lett., vol. 30, pp. 335–339,
1973.

[108] G. M. Radecky et al., “Study of single pion production by weak charged currents in low energy
neutrino - deuterium interactions,” Phys. Rev., vol. D25, pp. 1161–1173, 1982.

[109] D. Day et al., “Study of neutrino - deuterium charged current two pion production in the threshold
region,” Phys. Rev., vol. D28, pp. 2714–2720, 1983.

BIBLIOGRAPHY 267

[110] T. Yang, C. Andreopoulos, H. Gallagher, and P. Kehayias, “A hadronization model for the MINOS
experiment,” AIP Conf. Proc., vol. 967, pp. 269–275, 2007.

[111] A. Buckley, H. Hoeth, H. Lacker, H. Schulz, and J. E. von Seggern, “Systematic event generator
tuning for the LHC,” Eur. Phys. J., vol. C65, pp. 331–357, 2010.

[112] A.K.Ichikawa et al., “Private communication,”

[113] R.Hatcher, M.Messier, et al., “Private communication,”

[114] G. D. Barr, T. K. Gaisser, P. Lipari, S. Robbins, and T. Stanev, “A three-dimensional calculation
of atmospheric neutrinos,” Phys. Rev., vol. D70, p. 023006, 2004.

[115] G. Battistoni, A. Ferrari, T. Montaruli, and P. R. Sala, “Progresses in the validation of the FLUKA
atmospheric nu flux calculations,” Nucl. Phys. Proc. Suppl., vol. 110, pp. 336–338, 2002.

[116] K. Agashe, Y. Cui, L. Necib, and J. Thaler, “(In)direct Detection of Boosted Dark Matter,” JCAP,
vol. 1410, no. 10, p. 062, 2014.

[117] J. Berger, Y. Cui, and Y. Zhao, “Detecting Boosted Dark Matter from the Sun with Large Volume
Neutrino Detectors,” JCAP, vol. 1502, no. 02, p. 005, 2015.

[118] K. Kong, G. Mohlabeng, and J.-C. Park, “Boosted dark matter signals uplifted with self-
interaction,” Phys. Lett., vol. B743, pp. 256–266, 2015.

[119] J. F. Cherry, M. T. Frandsen, and I. M. Shoemaker, “Direct Detection Phenomenology in Models
Where the Products of Dark Matter Annihilation Interact with Nuclei,” Phys. Rev. Lett., vol. 114,
p. 231303, 2015.

[120] J. Kopp, J. Liu, and X.-P. Wang, “Boosted Dark Matter in IceCube and at the Galactic Center,”
JHEP, vol. 04, p. 105, 2015.

[121] L. Necib, J. Moon, T. Wongjirad, and J. M. Conrad, “Boosted Dark Matter at Neutrino Experi-
ments,” Phys. Rev., vol. D95, no. 7, p. 075018, 2017.

[122] H. Alhazmi, K. Kong, G. Mohlabeng, and J.-C. Park, “Boosted Dark Matter at the Deep Under-
ground Neutrino Experiment,” JHEP, vol. 04, p. 158, 2017.

[123] D. Kim, J.-C. Park, and S. Shin, “Dark Matter ?Collider? from Inelastic Boosted Dark Matter,”
Phys. Rev. Lett., vol. 119, no. 16, p. 161801, 2017.

[124] C. Anderson et al., “The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab,”
JINST, vol. 7, p. P10019, 2012.

[125] F. Cavanna, M. Kordosky, J. Raaf, and B. Rebel, “LArIAT: Liquid Argon In A Testbeam,” 2014.

[126] A. Bettini et al., “The ICARUS liquid argon TPC: A Complete imaging device for particle physics,”
Nucl. Instrum. Meth., vol. A315, pp. 223–228, 1992.

[127] H. Chen et al., “Proposal for a New Experiment Using the Booster and NuMI Neutrino Beamlines:
MicroBooNE,” 2007.

[128] R. Acciarri et al., “Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Ex-
periment (DUNE),” 2015.

268 BIBLIOGRAPHY

[129] E. A. Paschos and J. Y. Yu, “Neutrino interactions in oscillation experiments,” Phys. Rev., vol. D65,
p. 033002, 2002.

[130] “Particle Data Group Monte Carlo Particle Numbering Scheme,” 2007. URL: http://pdg.lbl.
gov/2007/reviews/montecarlorpp.pdf (last accessed 25 Sept 2017).

[131] R. D. Woods and D. S. Saxon, “Diffuse Surface Optical Model for Nucleon-Nuclei Scattering,”
vol. 95, pp. 577–578, July 1954.

[132] A. Bodek and J. L. Ritchie, “Fermi-motion effects in deep-inelastic lepton scattering from nuclear
targets,” vol. 23, pp. 1070–1091, Mar. 1981.

[133] A. Bodek, M. E. Christy, and B. Coopersmith, “Effective Spectral Function for Quasielastic Scat-
tering on Nuclei,” vol. 74, p. 3091, Oct. 2014. arXiv: 1405.0583.

[134] K. Abe, Y. Hayato, T. Iida, K. Ishihara, J. Kameda, Y. Koshio, A. Minamino, C. Mitsuda,
M. Miura, S. Moriyama, M. Nakahata, Y. Obayashi, H. Ogawa, H. Sekiya, M. Shiozawa, Y. Suzuki,
A. Takeda, Y. Takeuchi, K. Ueshima, H. Watanabe, I. Higuchi, C. Ishihara, M. Ishitsuka, T. Kajita,
K. Kaneyuki, G. Mitsuka, S. Nakayama, H. Nishino, K. Okumura, C. Saji, Y. Takenaga, S. Clark,
S. Desai, F. Dufour, A. Herfurth, E. Kearns, S. Likhoded, M. Litos, J. L. Raaf, J. L. Stone, L. R.
Sulak, W. Wang, M. Goldhaber, D. Casper, J. P. Cravens, J. Dunmore, J. Griskevich, W. R. Kropp,
D. W. Liu, S. Mine, C. Regis, M. B. Smy, H. W. Sobel, M. R. Vagins, K. S. Ganezer, B. Hartfiel,
J. Hill, W. E. Keig, J. S. Jang, I. S. Jeoung, J. Y. Kim, I. T. Lim, K. Scholberg, N. Tanimoto, C. W.
Walter, R. Wendell, R. W. Ellsworth, S. Tasaka, G. Guillian, J. G. Learned, S. Matsuno, M. D.
Messier, A. K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, T. Nakadaira, K. Nakamura,
K. Nishikawa, K. Nitta, Y. Oyama, A. T. Suzuki, M. Hasegawa, H. Maesaka, T. Nakaya, T. Sasaki,
H. Sato, H. Tanaka, S. Yamamoto, M. Yokoyama, T. J. Haines, S. Dazeley, S. Hatakeyama, R. Svo-
boda, G. W. Sullivan, R. Gran, A. Habig, Y. Fukuda, Y. Itow, T. Koike, C. K. Jung, T. Kato,
K. Kobayashi, C. McGrew, A. Sarrat, R. Terri, C. Yanagisawa, N. Tamura, M. Ikeda, M. Sakuda,
Y. Kuno, M. Yoshida, S. B. Kim, B. S. Yang, T. Ishizuka, H. Okazawa, Y. Choi, H. K. Seo, Y. Gando,
T. Hasegawa, K. Inoue, H. Ishii, K. Nishijima, H. Ishino, Y. Watanabe, M. Koshiba, Y. Totsuka,
S. Chen, Z. Deng, Y. Liu, D. Kielczewska, H. G. Berns, K. K. Shiraishi, E. Thrane, K. Washburn,
and R. J. Wilkes, “Search for n− n̄ oscillation in Super-Kamiokande,” vol. 91, p. 072006, Apr. 2015.
arXiv: 1109.4227.

[135] R. Armenteros and B. French, “Antinucleon-Nucleon Interactions,” vol. 4, p. 237, 1969.

[136] J. Gustafson, A Search for Baryon Number Violation by Two Units at the Super-Kamiokande
Detector. PhD thesis, 2016.

[137] C. Amsler, A. V. Anisovich, C. A. Baker, B. M. Barnett, C. J. Batty, M. Benayoun, P. Blum,
K. Braune, D. V. Bugg, T. Case, V. CredÃ©, K. M. Crowe, M. Doser, W. DÃŒnnweber, D. En-
gelhardt, M. A. Faessler, R. P. Haddock, F. H. Heinsius, M. Heinzelmann, N. P. Hessey, P. Hidas,
D. Jamnik, H. Kalinowsky, P. Kammel, J. Kisiel, E. Klempt, H. Koch, M. Kunze, U. Kurilla, R. Lan-
dua, H. Matthay, C. A. Meyer, F. Meyer-Wildhagen, L. Montanet, R. Ouared, K. Peters, B. Pick,
W. Popkov, M. Ratajczak, C. Regenfus, J. Reinnarth, W. Roethel, A. V. Sarantsev, S. Spanier,
U. Strohbusch, M. Suffert, J. S. Suh, U. Thoma, I. Uman, S. Wallis-Plachner, D. Walther, U. Wied-
ner, K. Wittmack, and B. S. Zou, “Annihilation at rest of antiprotons and protons into neutral
particles,” vol. 720, pp. 357–367, June 2003.

[138] E. Klempt, C. Batty, and J.-M. Richard, “The antinucleon nucleon interaction at low energy:
Annihilation dynamics,” vol. 413, pp. 197–317, July 2005.

http://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf
http://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf

BIBLIOGRAPHY 269

[139] T. Bressani and A. Filippi, “Antineutron physics,” vol. 383, pp. 213–297, Aug. 2003.

[140] “Professor is a tuning tool for monte carlo event generators.” URL: http://professor.hepforge.
org/.

[141] P. Abreu et al., “Tuning and test of fragmentation models based on identified particles and precision
event shape data,” Z. Phys., vol. C73, pp. 11–60, 1996.

http://professor.hepforge.org/
http://professor.hepforge.org/

	Introduction
	GENIE project overview
	Neutrino Interaction Simulation: Challenges and Significance

	I Neutrino Interaction Physics Modeling
	Physics Modeling Elements
	Introduction
	Simulation of initial nuclear state dynamics
	Overview of nuclear models implemented in GENIE
	Fermi Gas model
	Bodek - Ritchie (Fermi Gas with short-range correlations) model

	Neutrino cross-section calculation scattering off nucleons and nuclei
	Charged-current quasi-elastic scattering
	Llewellyn-Smith model
	Smith-Moniz model
	Nieves model

	Neutral-current elastic scattering
	Ahrens model

	Baryon production of resonances
	Rein-Sehgal model
	Berger-Sehgal model
	Kuzmin-Lyubushkin-Naumov model

	Multinucleon processes
	Empirical GENIE model
	Nieves model

	Non-resonance inelastic scattering
	Bodek - Yang model

	Strangeness production
	Charm production
	Coherent production of mesons
	Rein-Sehgal model

	Diffractive production of mesons
	Neutrino-electron elastic scattering and inverse muon decay
	Beyond standard model interactions
	Dark neutrinos

	Neutrino-induced hadronization
	Introduction
	Survey of measurements
	Overview of hadronization models implemented in GENIE
	Empirical AGKY 2018 model for low-mass hadronization
	Simulation strategy
	Low-W model: Particle content
	Low-W model: Hadron system decay

	Key data and theoretical assumptions built into the model
	Model systematics
	Evaluation of model strengths and weaknesses
	Discussion of limitations and opportunities for model improvements

	Empirical hadronization model for charm production
	Simulation strategy
	Key data and theoretical assumptions built into the model
	Model systematics
	Evaluation of model strengths and weaknesses
	Discussion of limitations and opportunities for model improvements

	PYTHIA6
	Interfacing GENIE and PYTHIA6
	Model systematics

	Hybrid models
	Characteristic data/MC comparisons

	Intranuclear hadron transport modeling
	Introduction
	Survey of models and measurements
	Survey of models
	Systematics of hadron-nucleus data
	INC models

	Overview of hadron transport models implemented in GENIE
	INTRANUKE hA 2018
	Simulation strategy
	Key data and theoretical assumptions built into the model
	Model systematics
	Evaluation of model strengths and weaknesses
	Summary of changes from previous versions of INTRANUKE hA
	Discussion of limitations and opportunities for model improvements

	INTRANUKE hN 2018
	Simulation strategy
	Key data and theoretical assumptions built into the model
	Model systematics
	Evaluation of model strengths and weaknesses
	Summary of changes from previous versions of INTRANUKE hN
	Discussion of limitations and opportunities for model improvements

	Characteristic data/MC distributions and comparison of hadron transport models in GENIE

	Summary

	Comprehensive Model Configurations and Tunes
	Introduction
	Naming conventions
	Comprehensive model configuration naming convention
	Tune naming convention

	GENIE comprehensive model configurations
	Overview
	Comprehensive model construction
	Construction of G18_01* series
	Construction of G18_02* series
	Construction of G18_10* series

	Critical comparison of comprehensive model configurations

	GENIE tunes
	Overview
	General strategy for free-nucleon cross-section model tuning
	Modeling the transition region

	General strategy for nuclear cross-section model tuning
	Discussion of tunes
	Discussion of G18_01* tunes
	Discussion of G18_02* tunes
	Discussion of G18_10* tunes
	Comparison of GENIE tunes

	Critical evaluation of GENIE comprehensive models and tunes - Opportunities for improvement and future work
	GENIE comprehensive model and tune recommendations
	BSM CMC and tunes
	Dark Neutrino tunes
	Boosted Dark Matter tunes

	II Software Framework of the GENIE Suite of Products
	The GENIE Generator
	Introduction
	Source code, configuration and data file organisation
	Core framework
	Algorithms
	Key concepts
	Algorithm configuration
	Algorithm nesting
	The Algorithm interface

	Registry
	Algorithm configuration system
	Special XML files and organization of the config directory

	Message logging system

	Event generation framework
	Data structures: Particles, Events and Interactions
	System of units
	Particles
	Events
	Logical structure of events

	Interactions

	Event generation processing units: Modules, Threads and Drivers
	Event generation modules
	Event generation threads (Event generators)
	Event generation drivers

	Output event n-tuples

	The GENIE Comparisons
	Introduction
	Source code, configuration and data file organisation
	The Comparisons software framework
	Overview
	General Plotting App

	The Plexus
	Plexus configuration

	Naming conventions
	Describing datasets
	The GExDataI interface
	GLinearDataI extension to the GExDataI interface
	GMultipleData extension to the GLinearDataI interface

	Describing GENIE predictions
	The GPredictionI interface
	GLinearPredictionI extension to the GPredictionI interface
	GMultiplePrediction extension to the GLinearPredictionI interface

	Data representation model
	GErrors
	GDataMap and GPredictionMap
	Degrees of freedom mapping in storages
	Data and Prediction Storages and their automatic plots
	ExCovarianceReader

	Implemented data/MC comparisons
	Caveats and opportunities for improvement

	The GENIE Tuning
	Introduction
	The GENIE / Professor interface
	xml configuration templates

	The Professor tuning tool
	Tune History

	III Using the GENIE Generator in Neutrino Mode
	Generating Neutrino Event Samples
	Introduction
	Preparing event generation inputs: Cross-section splines
	The XML cross section splines file format
	Downloading pre-computed cross section splines
	Generating cross section splines
	The gmkspl spline generation utility
	The gspladd spline merging utility

	Re-using splines for modified GENIE configurations
	Using cross section splines in your analysis program
	The gspl2root spline file conversion utility

	Simple event generation cases
	The gevgen generic event generation application

	Obtaining special samples
	Switching reaction modes on/off
	Event cherry-picking
	The gevpick cherry-picking utility

	The Event Library Interface Generator
	Using the generator
	Format of the library file

	Using a Realistic Flux and Detector Geometry
	Introduction
	Components for building customized event generation applications
	The flux driver interface
	The geometry navigation driver interface
	Setting-up GENIE MC jobs using fluxes and geometries

	Built-in flux drivers
	JPARC neutrino flux driver specifics
	NuMI neutrino flux driver specific
	FLUKA and BGLRS atmospheric flux driver specifics
	Generic histogram-based flux specifics
	Generic ntuple-based flux specifics

	Built-in geometry navigation drivers
	ROOT geometry navigation driver specifics
	Defining units
	Defining a fiducial volume

	Built-in specialized event generation applications
	Event generation application for the T2K experiment
	Event generation application for Fermilab neutrino experiments
	Event generation application for atmospheric neutrinos

	Analyzing Output Event Samples
	Introduction
	Printing-out events
	The gevdump utility

	Event loop skeleton program
	Extracting event information
	Event tree conversions
	The gntpc ntuple conversion utility
	Formats supported by gntpc
	The `gst' format
	The `gxml' format
	The `rootracker' formats
	The `tracker' formats

	Units

	IV GENIE Non-Neutrino Event Generation Modes
	Boosted Dark Matter
	Introduction
	Model Description
	Overview
	Cross-section Determination

	Usage
	The gmkspl_dm spline generation utility
	The gevgen_dm dark matter event generation utility
	The gevdump_dm utility

	Caveats and opportunities for further improvements

	Nucleon decay
	Introduction
	Model Description
	Usage
	The gevgen_ndcy event generation application

	Caveats and opportunities for further improvements

	Neutron-Antineutron Oscillation
	Model description
	The initial state
	Simulating the oscillating neutron
	Simulating the annihilating nucleon
	Simulating the remnant nucleus
	Simulating annihilation products
	Final state interactions

	Simulation results
	Super-Kamiokande comparison

	Discussion
	Branching ratio corrections
	Validating the phase space approximation

	Usage
	The gevgen_nnbarosc event generation application

	Future work
	Crystal Barrel data and new branching ratios

	Conclusions

	Hadron (and Photon) - Nucleus Scattering
	Model description
	Usage
	The gevgen_hadron event generation application

	Charged Lepton - Nucleus Scattering

	V Using the GENIE Comparisons and Tuning Products
	Model Characterization using the GENIE Comparisons
	Introduction

	Model Fits using the GENIE Tuning and Professor
	Introduction

	Supporting Tools / Event Reweighting
	Introduction and important caveats
	Formulation of problem
	List (partial) of reweightable systematic parameters in GENIE
	Propagating neutrino-cross section uncertainties
	Propagating hadronization and resonance decay uncertainties
	Formation-zone uncertainties
	Pion angular distribution uncertainties in N decay
	Branching ratio uncertainties

	Propagating intranuclear hadron transport uncertainties
	Reweighting the rescattering rate
	Reweighting the rescattering fates
	Computing event weights
	Computing penalty terms
	Unitarity expectations

	Event reweighting applications
	Built-in applications
	The grwght1scan utility

	Writing a new reweighting application

	Adding a new event reweighting class

	VI Appendices
	Copyright Notice and Citation Guidelines
	Guidelines for Fair Academic Use
	Main references

	Downloading & Installing GENIE
	Understanding the versioning scheme
	Obtaining the source code
	3rd Party Sofwtare
	Preparing your environment
	Configuring GENIE
	Building GENIE
	Performing simple post-installation tests

	Special Topics, FAQs and Troubleshooting
	Installation / Versioning
	Making user-code conditional on the GENIE version

	Software framework
	Calling GENIE algorithms directly

	Particle decays
	Deciding which particles to decay
	Setting particle decay flags
	Inhibiting decay channels

	Numerical algorithms
	Random number periodicity
	Setting required numerical accurancy

	Common Status and Particle Codes
	Status codes
	Particle codes
	Baryon resonance codes
	Ion codes
	GENIE pseudo-particle codes

	3rd Party Softw. Installation Instructions
	LOG4CPP
	LIBXML2
	LHAPDF5
	PYTHIA6
	ROOT

	Finding More Information
	The GENIE web page
	Subscribing at the GENIE mailing lists
	The GENIE document database (DocDB)
	The GENIE issue tracker
	The GENIE Generator repository browser
	The GENIE doxygen documentation

	Glossary
	Bibliography

