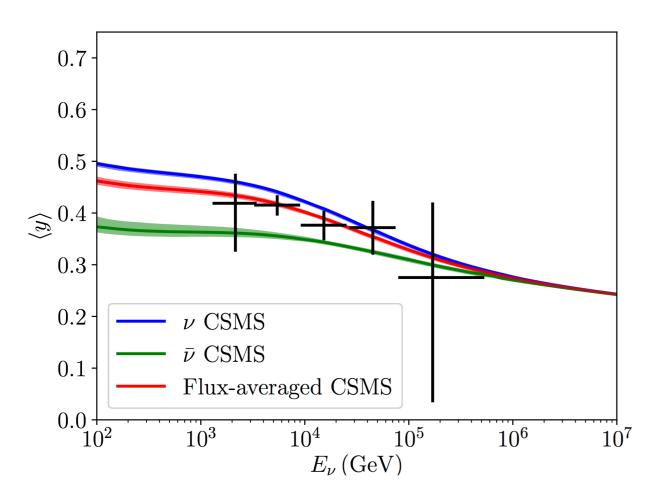
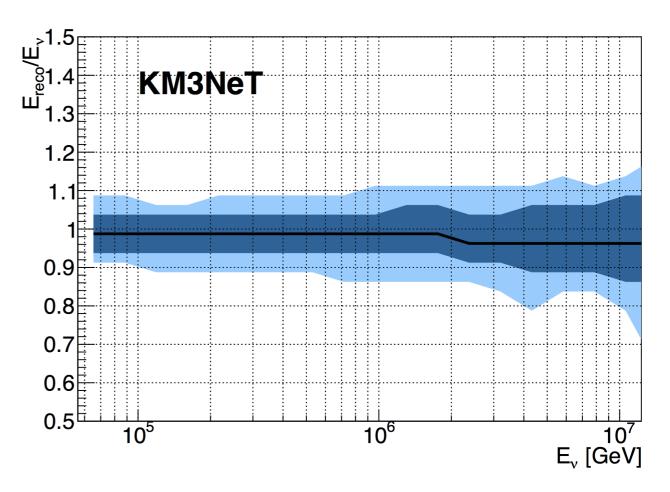
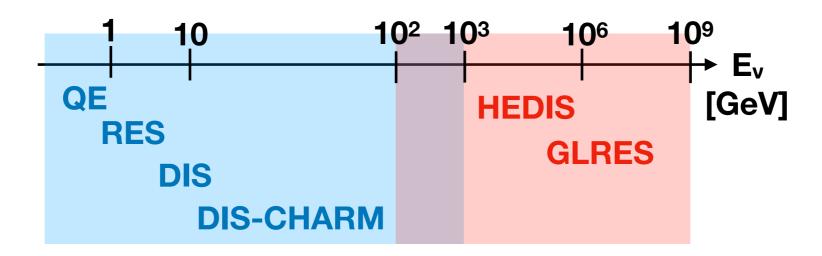
Charting GENIE4 roadmap 11/02/2019


Very high energy extension


Alfonso Garcia and Aart Heijboer

Motivation:

- Neutrino astronomy is rapidly moving forward.
- Such detectors can be used to do particle physics!
 - O First measurements of cross sections at high energies from IceCube.
 - O Performance from KM3NeT/ARCA will be very valuable.



- Reliable simulations are needed.
 - O GENIE offers the perfect framework.

Overview:

- Current status of GENIE in the high energy regime:
 - O DIS channel based on Bodek-Yang model -> optimised for the low Q² range.
 - O BY model uses as input GRV98LO PDFs -> limited Q² range [0.8,2·10⁶].
 - O Contributions from heavy quarks are not included (except for charm production).
 - O Predictions above 1TeV become unreliable.
- We have been developing a new package (HEDIS) to overcome this limitation.
 - O Newer PDFs with broader Q² phase space.
 - O NLO QCD corrections in the structure functions.
 - O Account for the heavy quark contributions.

Theory:

- DIS differential cross section is well known.
 - Structure functions (SF) include all the QCD information about the nucleons.
 - O PDFs quantify the contribution from quarks (and gluon) in different regions of the phase space.

$$\frac{d\sigma^{\nu,\bar{\nu}}}{dxdy} = \frac{G_F^2 M E_{\nu}}{\pi} \left[y \left(xy + \frac{m_l^2}{2E_{\nu}M} \right) F_1 \right] + \left(1 - y - \frac{Mxy}{2E_{\nu}} - \frac{m_l^2}{4E_{\nu}^2} \right) F_2$$

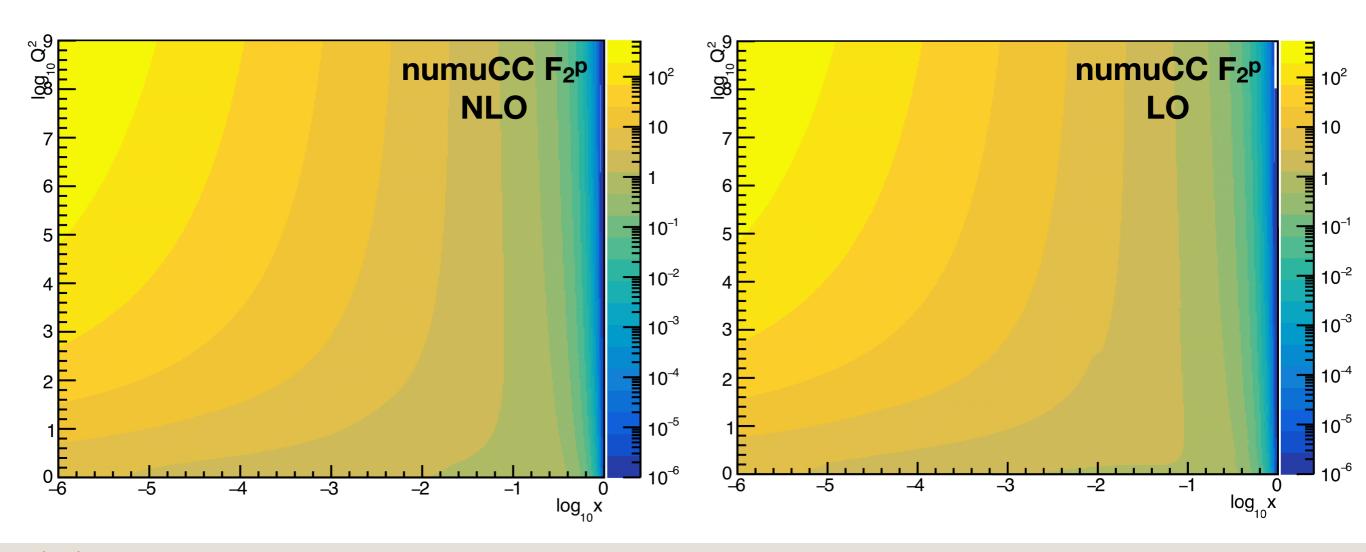
$$\pm \left[xy \left(1 - \frac{y}{2} \right) - y \frac{m_l^2}{4ME_{\nu}} \right] F_3$$

$$+ \left(xy \frac{m_l^2}{2ME_{\nu}} + \frac{m_l^4}{4M^2 E_{\nu}^2} \right) F_4 - \frac{m_l^2}{2ME_{\nu}} F_5 \right],$$

Structure Functions (x,Q²)

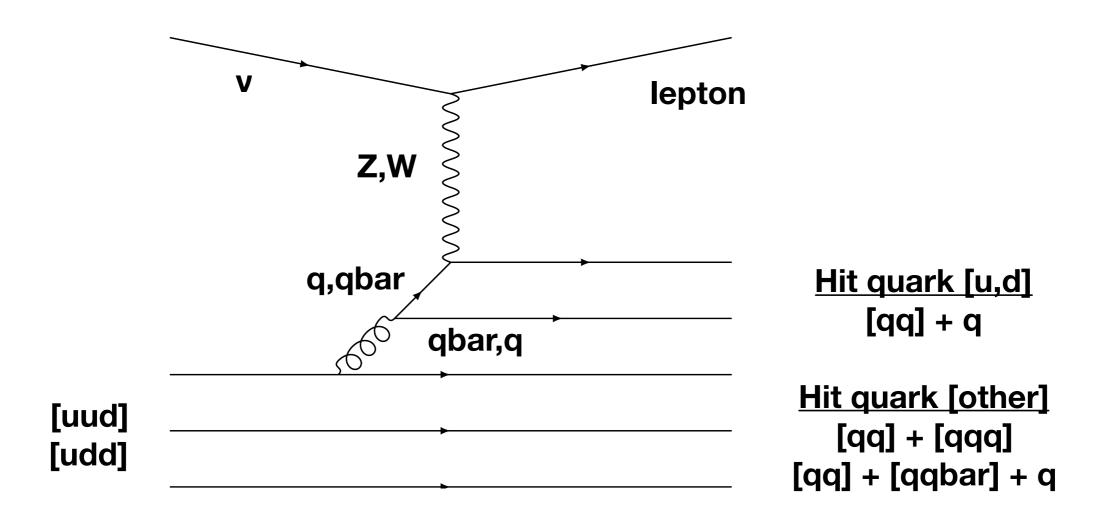
$$F_{1}^{p}[LO] = (F_{2}^{p}-F_{L}^{p})/2x$$
 $F_{2}^{p}[LO] = 2x(d_{v}+d_{s}+s_{s}+b_{s}+\bar{u}_{s}+\bar{c}_{s})$
 $F_{3}^{p}[LO] = 2(d_{v}+d_{s}+s_{s}+b_{s}-\bar{u}_{s}-\bar{c}_{s})$

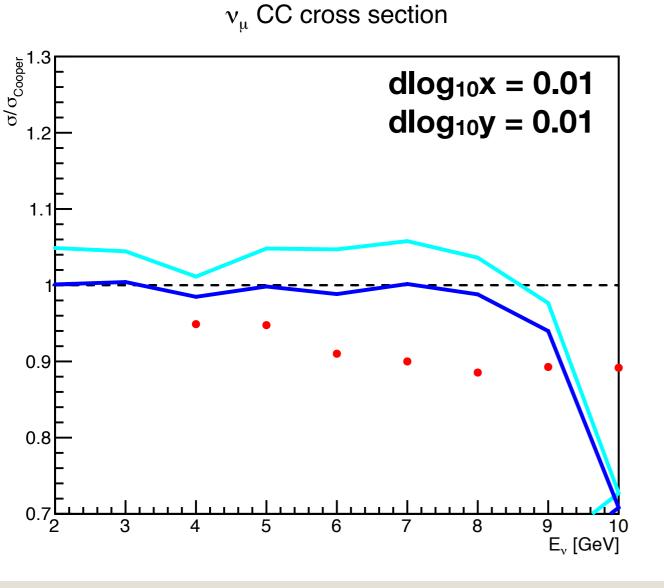
Parton Density Functions (x,Q²)

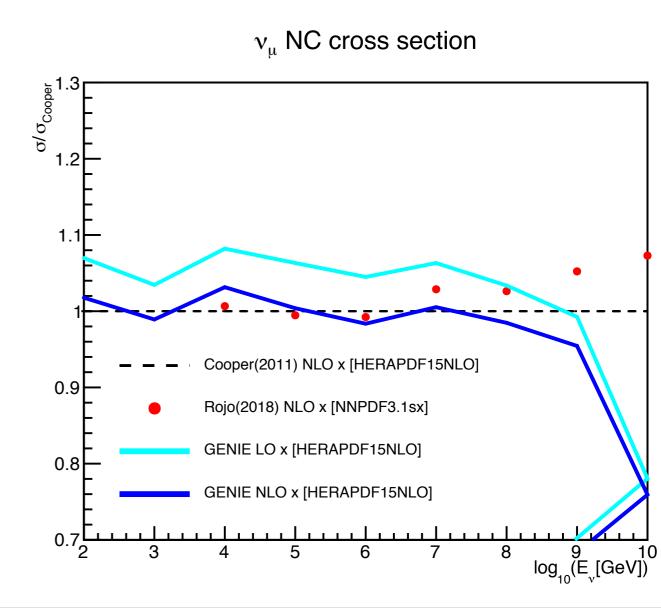

 F_{i}^{p} [LO] (z,Q²) z = x(1+m_{fq}²/Q²)

DGLAP evolution equations

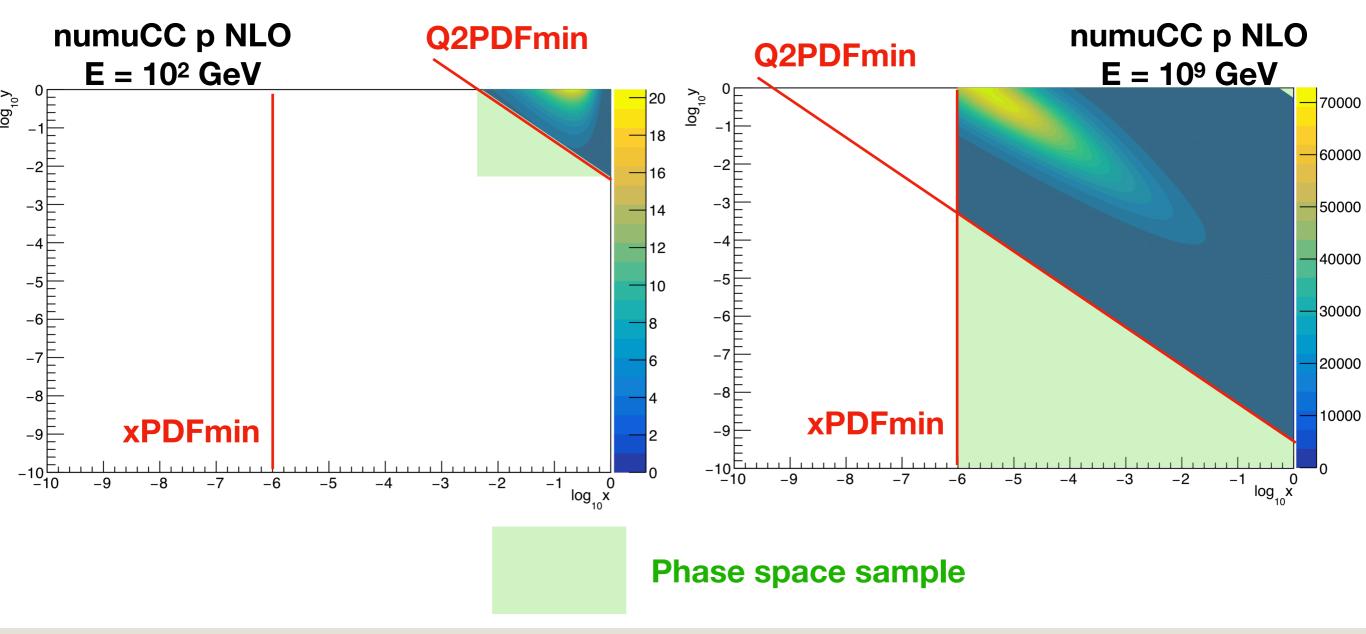
Deliverables:


- Double differential cross section using LO or NLO QCD structure function .
 - O New framework to compute $F_L^{p,n}$, $F_2^{p,n}$, $F_3^{p,n}$ using external software QCDNUM17, which interacts with LHAPDF6 to read the PDFs.
 - O SF are stored in BLI2DNonUnifGrid [$log_{10}x$, $log_{10}Q2$], in the range of validity from the PDFs.
 - O DDXsec calculated using precomputed (not on the fly) SF.
 - O Currently assuming scalability to any nuclei.

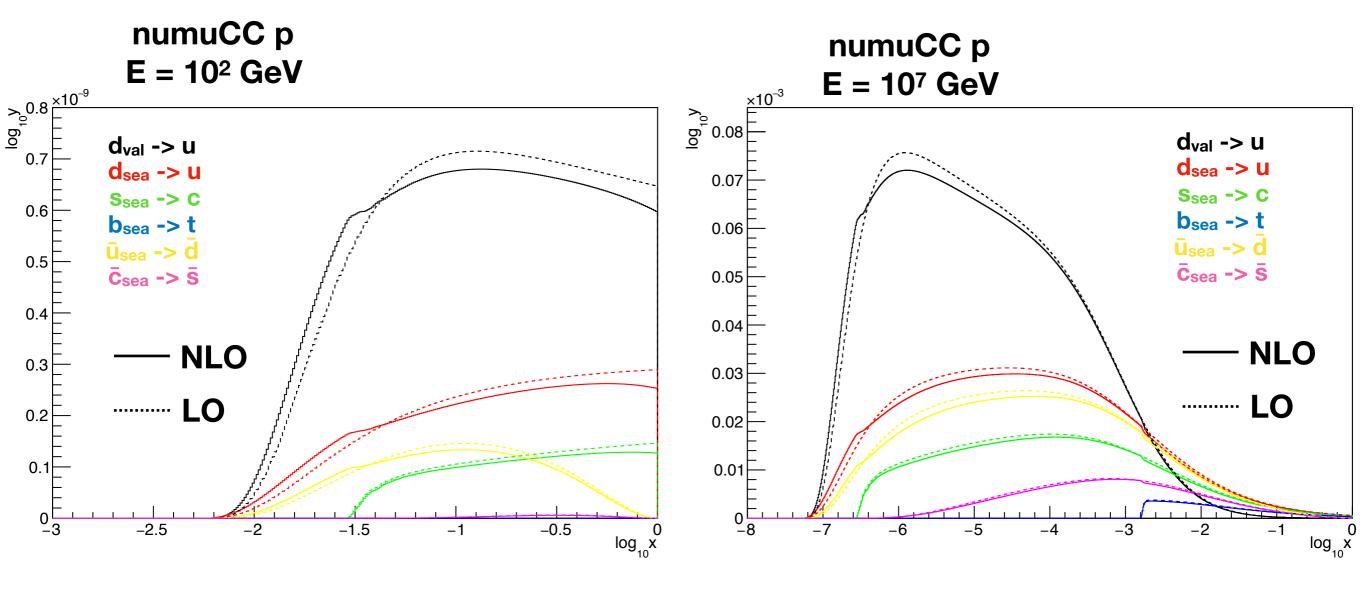



Deliverables:

- New hadronzation scheme to account for heavy quark production.
 - O Contribution of each initial&final quark to the DDXSec is stored (using LO expression).
 - O Hadronization started using hit/struck quark method (similar to current implementation).
 - O Core of the hadronization is handle by PYTHIA6.
 - O Top quark forced to decay before hadronizing.



- Integrated cross section:
 - O Using a simple grid $[log_{10}x, log_{10}y]$ we can get very similar performance to MC methods.
 - Maximal xsec for each energy is obtained "for free".


- Sampling kinematics -> great improvement in speed (x30)!
 - O MaxXsec for different energies loaded from ASCII files in Splines.
 - O Random generation using log₁₀x,log₁₀y and restricting to the PDFs valid phase space.

Hadronization:

- At NLO the parton picture is not valid anymore -> more complex hadronization.
- O In order to use the parton picture we quantify the contribution from each quark at LO to the DDXSec for each nucleon.

Outgoing particles:

- O No initial/final nuclear effects are taking into account.
- O Less restrictions in the "on-shell" of outgoing particles (dominated by precision of double).

[dx	Name	Tst_	PDG	Mot	ther	Daugh	ter_	Px	Ру	Pz
		130							· · ·	
0	nu_mu	0	14	-1	-1	4	4	0.000	0.000	100000000.000 100000000.000 0.000
1	016	0	1000080160	-1	-1	2	3	0.000	0.000	0.000 14.895 14.895
2	neutron	11	2112	1	-1	5	5	0.000	0.000	0.000 0.940 0.940
3	015	1	1000080150	1	-1	-1	-1	-0.000	-0.000	-0.000 13.971 13.971
4	mu-	1	13	0	-1	-1	-1	51.242	-2.051	99566238.801 99566238.801 **0.106 M = 0.0
5	HadrSyst	12	2000000001	2	-1	6	7	-51.242	2.051	433761.199 433762.138 **0.000 M = 901.362
6	u	12	2	5	-1	8	8	-51.032	2.279	433761.438 433761.441 **0.330 M = 0.310
7	ud_0	12	2101	5	-1	8	8	-0.210	-0.228	-0.248 0.689 **0.579 M = 0.562
8	string	12	92	6	-1	9	24	-51.242	2.051	433761.190 433762.130 **0.000 M = 901.362
9	eta	12	221	8	-1	25	27	-3.155	0.143	27211.064 27211.064 0.547
10	pi0	12	111	8	-1	28	29	-2.812	-0.012	24382.528 24382.529 0.135
11	pi+	1	211	8	-1	-1	-1	-12.867	0.208	109111.665 109111.666 0.140
12	pi0	12	111	8	-1	30	31	-3.439	0.750	26935.912 26935.912 0.135
13	K*0	12	313	8	-1	32	33	-17.745	0.904	156591.819 156591.820 ***0.896 M = 0.878
14	K-	1	-321	8	-1	-1	-1	-4.702	0.017	35668.433 35668.434 0.494
15	pi+	1	211	8	-1	-1	-1	-1.477	0.813	12064.206 12064.207 0.140
16	rho-	12	-213	8	-1	34	35	-4.524	-1.131	33585.325 33585.326 **0.767 M = 0.690
17	pi+	1	211	8	-1	-1	-1	0.342	0.844	2419.853 2419.853 0.140
18	pi0	12	111	8	-1	36	37	0.033	-0.023	29.972 29.972 0.135
19	rho-	12	-213	8	-1	38	39	-0.831	-0.243	5720.206 5720.207 **0.767 M = 0.708
20	rho+	12	213	8	-1	40	41	-0.039	-0.554	31.815 31.828 **0.767 M = 0.717
21 22	pi0	12	111	8	-1	42	43	-0.040	0.102	0.009 0.175 0.135
	K0	12	311	8	-1	44	44	0.599	0.538	5.309 5.393 0.498
23	K*-	12	-323	8	-1	45	46	-0.723	-0.251	1.902 2.240 **0.892 M = 0.902
24 25	proton	1 12	2212 111	8	-1 -1	-1 47	-1 48	0.138 -1.178	-0.053	1.176 1.512 0.938
25 26	pi0	12		9 9	-1 -1	47 49	48 50	-1.1/8 -1.238	-0.095 0.110	9491.799
26 27	pi0 pi0	12	111 111	9	-1 -1	49 51	วข 52	-1.238 -0.739	0.110	11081.490 11081.490 0.135 6637.775 6637.775 0.135
28		12	22	10	-1 -1	51	-1	-0.739 -1.522	-0.054	13610.820 13610.820 **0.000 M = -0.003
28 29	gamma		22 22	10	-1 -1	-1 -1	-1 -1	-1.322 -1.290	0.041	
30	gamma	1 1	22	12	-1 -1	-1 -1	-1 -1	-1.290 -2.332	0.559	10771.708 10771.708 **0.000 M = 0.002 18637.051 18637.051 **0.000 M = 0.004
31	gamma	1	22	12	-1 -1	-1 -1	-1 -1	-2.332 -1.107	0.191	8298.862 8298.862 **0.000 M = 0.002
32	gamma K0	12	22 311	13	-1 -1	53	53	-1.10/ -10.298	0.191	0290.002
32 33	pi0	12	311	13	-1 -1	53 54	55	-10.296 -7.447	0.649	90091.201
34	pi-		111 -211	16	-1 -1	54	-1	-/.44/ -1.120	-0.533	9738.346 9738.346 0.140
35	pi- pi0	1 12	-211 111	16	-1 -1	-1 56	-1 57	-1.120 -3.404	-0.533 -0.598	9736.346 9736.346 0.140

Conclusions:

- HEDIS package: https://github.com/pochoarus/GENIE-HEDIS
 - O DIS cross section using NLO QCD expressions.
 - Hadronization including heavy quarks.

Disclaimer:

- Package has been tested for high energies.
 - Used PDFs are not suitable for low Q² region.
 - New integrated cross section and sampling methods are optimal above 100GeV.
 - Very simplistic picture of nuclear effects.
- O At low energies all these aspects should be reviewed.

Look into the future:

- O Compare QCDNUM with other softwares (APFEL).
- O Couple NLO matrix elements to NLO parton showering (using PYTHIA8?).

