

MK-model improvement

Minoo Kabirnezhad

GENIE meeting

Feb. 11, 2019

Single pion production

 Single pion can be produced via decay of resonance excitations or nonresonant interactions.

Inclusive electron scattering data

• For E_{ν} <1 GeV only Δ resonance contributes but for higher energy (DUNE) all resonances contribute to single pion production.

- Δ resonance dominates
- Only single pion can be produced

Beyond △ region W>1.4 GeV

- No single resonance dominate
- Several comparable resonances overlap
- Multi-pion and other mesons can be produced

Rein-Sehgal model (1981)

D. Rein and L. M. Sehgal, Annals Phys. 133 (1981) 79.

Rein-Sehgal is default model in the NEUT and GENIE

Easy to be implemented in generators.

It covers all resonances up to 2 GeV.

It does not cover non-resonant interaction

Not a full kinematic model. $d \sigma/dW dQ^2$ The helicity amplitudes are **not** a function of pion angles

Pion angles are described by density matrix. NEUT and GENIE **only** implemented the Δ resonance.

The RS model is improved by including the pion angles and non-resonant interactions

Resonance	M_R	Γ_0	XE
P ₃₃ (1232)	1232	117	1
$P_{11}(1440)$	1430	350	0.65
$D_{13}(1520)$	1515	115	0.60
$S_{11}(1535)$	1535	150	0.45
$P_{33}(1600)$	1600	320	0.18
$S_{31}(1620)$	1630	140	0.25
$S_{11}(1650)$	1655	140	0.70
$D_{15}(1675)$	1675	150	0.40
$F_{15}(1680)$	1685	130	0.67
$D_{13}(1700)$	1700	150	0.12
$D_{33}(1700)$	1700	300	0.15
$P_{11}(1710)$	1710	100	0.12
$P_{13}(1720)$	1720	250	0.11
$F_{35}(1905)$	1880	330	0.12
$P_{31}(1910)$	1890	280	0.22
$P_{33}(1920)$	1920	260	0.12
$F_{37}(1950)$	1930	285	0.40

Rein-Sehgal model (1981)

D. Rein and L. M. Sehgal, Annals Phys. 133 (1981) 79.

Rein-Sehgal is default model in the NEUT and GENIE

Easy to be implemented in generators.

It covers all resonances up to 2 GeV.

It does not cover non-resonant interaction

Not a full kinematic model. $d\sigma/dW dQ^2$ The helicity amplitudes are **not** a function of pion angles

Pion angles are described by density matrix. NEUT and GENIE **only** implemented the Δ resonance.

Output of the modified RS model $d~\sigma/dW~dQ^2d\Omega_{\pi}$

Resonance	M_R	Γ_0	XΕ
$P_{33}(1232)$	1232	117	1
$P_{11}(1440)$	1430	350	0.65
$D_{13}(1520)$	1515	115	0.60
$S_{11}(1535)$	1535	150	0.45
$P_{33}(1600)$	1600	320	0.18
$S_{31}(1620)$	1630	140	0.25
$S_{11}(1650)$	1655	140	0.70
$D_{15}(1675)$	1675	150	0.40
$F_{15}(1680)$	1685	130	0.67
$D_{13}(1700)$	1700	150	0.12
$D_{33}(1700)$	1700	300	0.15
$P_{11}(1710)$	1710	100	0.12
$P_{13}(1720)$	1720	250	0.11
$F_{35}(1905)$	1880	330	0.12
$P_{31}(1910)$	1890	280	0.22
$P_{33}(1920)$	1920	260	0.12
$F_{37}(1950)$	1930	285	0.40

MK-model (past) M. Kabirnezhad, Phys. Rev. D 97, 013002

MK model is a model for single pion production
 i.e. resonant and nonresonant interactions including
 the interference effects.

- Uses Rein-Sehgal model to describe resonant interaction (17 resonances) up to W=2 GeV.
- Lepton mass is included.
- Non-resonant background is defined by a set of diagrams determined by HNV model.
 E. Hernandez, J. Nieves and M. Valverde, Phys. Rev. D 76 (2007) 033005

The MK-model in NEUT

NEUT comparisons with data shows improvement with MK-model.

MK-model improvement

- Verifying the model is difficult with limited neutrino data sets!
- Existing neutrino data on "free" nucleon are old and with large error and it is very unlikely to be improved.

A practical solution is to split the model

- 1. Vector part (electron scattering)
- 2. Axial part (pion scattering)

MK-model improvement Vector part

1. Updating vector form-factor

- MK model used to have two form-factors (RS & GS)
- GS form-factor used to be the default form-factor.
- GSK is the updated form-factor for MK model. (see next slide)
- 2. fitting phases between resonance and nonresonance amplitudes with electron scattering data.

Graczyk-Sobczyk form-factor

 They equivalent the RS model with Lalakiluch et al model (Rarita-Schwinger formalism)

$$\begin{split} G_V^{RS}(Q^2,W) &= \frac{1}{2\sqrt{3}} \left(1 + \frac{Q^2}{(M+W)^2} \right)^{\frac{1}{2}} \left[C_4^V \frac{W^2 - Q^2 - M^2}{2M^2} + C_5^V \frac{W^2 + Q^2 - M^2}{2M^2} + \frac{C_3^V}{M} (W+M) \right], \\ G_V^{RS}(Q^2,W) &= -\frac{1}{2\sqrt{3}} \left(1 + \frac{Q^2}{(M+W)^2} \right)^{\frac{1}{2}} \left[C_4^V \frac{W^2 - Q^2 - M^2}{2M^2} + C_5^V \frac{W^2 + Q^2 - M^2}{2M^2} - C_3^V \frac{(M+W)M + Q^2}{MW} \right] \\ 0 &= C_4^V \frac{W}{M^2} + \frac{C_5^V}{M} \frac{(M+W)}{W} + \frac{C_3^V}{M} . \end{split}$$

A "partial" solution used by other models is:

$$C_5^V = 0, \quad C_3^V = -\frac{W}{M}C_4^V$$

$$C_4^V(Q^2) = -4\sqrt{3}\left(\frac{M}{M+W}\right)^2 \left(1 + \frac{Q^2}{(M+W)^2}\right)^{-3/2} G_V^{RS}(Q^2).$$

it does not agree well with the existing electromagnetic data.

GS use the Lalakulich fit to e.m. data

$$\begin{split} C_3^V &= 2.13 \left(1 + \frac{Q^2}{4M_V^2} \right)^{-1} \left(1 + \frac{Q^2}{M_V^2} \right)^{-2}, \\ C_4^V &= -1.51 \left(1 + \frac{Q^2}{4M_V^2} \right)^{-1} \left(1 + \frac{Q^2}{M_V^2} \right)^{-2}, \\ C_5^V &= 0.48 \left(1 + \frac{Q^2}{4M_V^2} \right)^{-1} \left(1 + \frac{Q^2}{0.776M_V^2} \right)^{-2} \end{split}$$

Is there a typo in C_5 ?

Graczyk-Sobczyk form-factor

 They equivalent the RS model with Lalakiluch et al model (Rarita-Schwinger formalism)

$$\begin{split} G_V^{RS}(Q^2,W) \; &= \; \frac{1}{2\sqrt{3}} \left(1 + \frac{Q^2}{(M+W)^2} \right)^{\frac{1}{2}} \left[C_4^V \frac{W^2 - Q^2 - M^2}{2M^2} + C_5^V \frac{W^2 + Q^2 - M^2}{2M^2} + \frac{C_3^V}{M} (W+M) \right], \\ G_V^{RS}(Q^2,W) \; &= - \frac{1}{2\sqrt{3}} \left(1 + \frac{Q^2}{(M+W)^2} \right)^{\frac{1}{2}} \left[C_4^V \frac{W^2 - Q^2 - M^2}{2M^2} + C_5^V \frac{W^2 + Q^2 - M^2}{2M^2} - C_3^V \frac{(M+W)M + Q^2}{MW} \right] \\ 0 \; &= \; C_4^V \frac{W}{M^2} + \frac{C_5^V}{M} \frac{(M+W)}{W} + \frac{C_3^V}{M} . \end{split}$$

A "partial" solution used by other models is:

$$C_5^V = 0, \quad C_3^V = -\frac{W}{M}C_4^V$$

$$C_4^V(Q^2) = -4\sqrt{3}\left(\frac{M}{M+W}\right)^2 \left(1 + \frac{Q^2}{(M+W)^2}\right)^{-3/2} G_V^{RS}(Q^2).$$

We should check the actual solution within MK-model

> GSK form-factor

MK-model improvement (Vector part)

 MK-model with Graczyk-Sobczyk (GS) form factor does not agree with inclusive electron scattering data.

 Vector form factor is updated version of GS form factor. It is called "GSK" form factor to distinguish.

Cross-section definition in electron scattering

$$\begin{split} \frac{d\sigma_{em}}{d\Omega' dE' d\Omega_{\pi}^*} &= \Gamma_{em} \Big\{ \sigma_T + \varepsilon \sigma_L + \sqrt{2\varepsilon (1+\varepsilon)} \sigma_{LT} \cos \phi_{\pi}^* \\ &+ h \sqrt{2\varepsilon (1-\varepsilon)} \sigma_{LT'} \sin \phi_{\pi}^* + \varepsilon \sigma_{TT} \cos 2\phi_{\pi}^* \Big\} \end{split}$$

$$\Gamma \equiv \frac{\alpha}{2\pi^2} \frac{E'}{E} \frac{(W^2 - m_p^2)}{2m_p Q^2} \frac{1}{1 - \epsilon}$$

$$\epsilon \equiv \left(1 + 2\frac{|\mathbf{q}|^2}{Q^2} \tan^2 \frac{\theta_e}{2}\right)^{-1},$$

 Γ is virtual photon flux factor

New Parameters:

- 1. A coefficient to form-factor of individual resonances.
- 2. A phase between resonance and bkg amplitudes.

14

17

MK-model improvement Vector part

1. Updating axial form-factor

- MK model used to have two form-factors (RS & GS)
- GS form-factor used to be the default form-factor.
- GSK is the updated form-factor for MK model. (see next slide)
- 2. fitting phases between resonance and nonresonance amplitudes with electron scattering data.
- 3. Fitting The axial form-factor at $Q^2=0$ (only $C_A^5(0)$)

Graczyk-Sobczyk axial form-factor

 They equivalent the RS model with Lalakiluch et al model (Rarita-Schwinger formalism)

$$\begin{split} \widetilde{G}_A^{RS,+3,+1}(W,Q^2) \; &= \; \frac{\sqrt{3}}{2} \left(1 + \frac{Q^2}{(M+W)^2} \right)^{\frac{1}{2}} \left[1 - \frac{W^2 - Q^2 - M^2}{8M^2} \right] C_5^A(Q^2), \qquad \text{GS} \\ \widetilde{G}_A^{RS,+0}(W,Q^2) \; &= \; \frac{\sqrt{3}}{2} \left(1 + \frac{Q^2}{(M+W)^2} \right)^{\frac{1}{2}} \left[\frac{W^2 - Q^2 - M^2}{2W(W-M)} + \frac{WQ^2}{4M^2(W-M)} \right] C_5^A(Q^2) \quad \text{GSK} \end{split}$$

$$\widetilde{G}_A^{RS,+3,+1}(W=M_{\Delta},Q^2=0)$$
 \approx $\widetilde{G}_A^{RS,+0}(W=M_{\Delta},Q^2=0)$

- In order to be able to get an agreement with both sets of data they choose GS form factor.
- MK model with GSK form-factor has better agreement with data

MK-model improvement (Axial part)

Cross section at Q²=0 and m_{μ} =0

$$\frac{d\sigma^{CC}}{dE_{l}d\Omega_{l}} = \frac{G_{F}^{2}V_{ud}^{2}}{2\pi^{2}} \frac{E'^{2}}{E - E'} F_{2},$$

At this particular kinematics, the axial part of neutrino cross section is related to the πN cross section through the PCAC relation.

$$F_2 = \frac{2f_\pi^2}{\pi} \sigma_{tot}(\pi + N)$$

Conclusion

- MK-model (single pion cross section model) consists of resonant and non-resonant interactions, **including the interference effects**.
- MK-model has a good agreement with hydrogen/deuterium target (neutrino/electron/pion) data after updating the vector form factor.
- Updated MK-model can have very different prediction for some channels.
- MK model implementation in NEUT consists of 14 (channels) functions which each function get E, Q², W, θ_{π} , ϕ_{π} and returns to differential cross section ($\frac{d\sigma}{dW}\frac{dQ^2d\Omega_{\pi}}{dQ^2}$) value for individual channels.
- GENIE implementation is not as easy as the NEUT implementation!

Backup

Bonn Inclusive ep Xsec

$$\frac{d^3\sigma_{ep\to e'X}}{dE_{e'}d\Omega_{e'}} = \Gamma_{\gamma}[\sigma_T(W,Q^2) + \epsilon\sigma_L(W,Q^2)].$$

virtual photon flux factor

$$\Gamma \equiv \frac{\alpha}{2\pi^2} \frac{E'}{E} \frac{(W^2 - m_p^2)}{2m_p Q^2} \frac{1}{1 - \epsilon}$$

$$\epsilon \equiv \left(1 + 2\frac{|\mathbf{q}|^2}{Q^2} \tan^2 \frac{\theta_e}{2}\right)^{-1},$$

No adjustable parameter in vector form-factors

MK model comparison with J-lab data

$$\sigma_T + \varepsilon \sigma_L$$

non-resonant background.

is defined by a set of diagrams determined by HNV model based on non-linear sigma model

Helicity amplitudes of above diagrams are calculated in the Adler frame.

- •the model is based on chiral symmetry and it is not reliable at high energy and high W.
- Smooth transition to higher W (1.4 GeV<W<1.6 GeV)
- The nonresonant background has no contribution at W>1.6 GeV

Dynamical coupled-channels (DCC) model

DCC analysis of meson production data

• Fully combined analysis of γN , $\pi N \Rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$ data

~ 27,000 data points are fitted

- In first analysis of the pion- and photon-induced meson production reactions, we have already constructed a DCC model for the strong interaction and the electromagnetic current of the proton at $Q^2 = 0$.
- More than 440 parameters are determined to fit the obtained vector form factors.

$$F_{NN^*}^V(Q^2) \sim \sum_{n=0}^{N} c_n^N (Q^2)^n$$

• All the other (406) parameters such as resonance parameters (masses & decay widths) and relative phases between resonant and nonresonant amplitudes have been extracted from the DCC model.

Vector and axial-vector currents

q.V (
$$Q^2=0$$
)=0 Conservation of Vector current (CVC)

q.A(Q²=0) $\propto m_\pi^2 \neq 0$ axial current is not conserved. But it is partially conserved (PCAC) when $m_\pi \to 0$

 \rightarrow Guiding principle to derive the axial current : PCAC relation with πN reaction amplitude

$$< X | q \cdot A(Q^2 \sim 0) | N > \sim i f_{\pi} < X | T | \pi N >$$