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1 Introduction

In this note, I present a new interface for models of lepton-nucleus scattering to be incorporated into the
GENIE event generator. It is largely based on the approach used to add the Valencia MEC model to GENIE

for the 2.12.6 release [1], but it generalizes and improves upon the methods used to compute differential
cross sections therein. Like the original Valencia MEC implementation (which has been refactored to use
the general interface), the phase space used for cross section calculations within the framework includes
lepton kinematic variables only. The new interface is therefore most appropriate for use in cases where a
theory calculation predicts only the leptonic final state (e.g., current MEC models in GENIE [2]) or where
a lepton-only implementation can serve as a precursor to (and validation tool for) a more detailed future
treatment of a particular model.

1.1 Formalism

The new cross section interface makes use of an object Wµν called the hadronic tensor, which may be used
to write lab-frame differential cross sections in the form

dσ

dEk′dΩk′
=
C
π2

|k′|
|k|

LµνW
µν . (1)

Here k (k′) is the 3-momentum of the initial (final) lepton, Ek′ is the final lepton total energy, Ωk′ is the
scattering solid angle, and the coupling factor C is defined by

C ≡


1
2 G

2
F |Vud|2 CC processes

1
2 G

2
F NC processes

α2

q4 EM processes

(2)

where GF is the Fermi constant, Vud is the CKM matrix element connecting the up and down quarks, α is
the fine-structure constant, and q is the 4-momentum transfer. The leptonic tensor Lµν may be written as

Lµν ≡
1

8
Tr
[
γ̃µ(�k +m`)γ̃ν(�k

′ +m′`)
]

(3)

where

γ̃µ ≡

{
γµ(1− γ5) CC and NC processes

γµ EM processes
(4)
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and m` (m′`) is the mass of the initial (final) lepton. The hadronic tensor may be written in the form12 [3]

Wµν =
1

2Mi

∑
f

(2π)3 δ(4)(P ′f − P − q)
〈
f
∣∣jµ(0)

∣∣i〉〈f ∣∣jν(0)
∣∣i〉∗ (5)

where P (Mi) is the 4-momentum (mass) of the initial target nucleus, P ′f is the total 4-momentum of the
final-state hadronic system, and jµ is the appropriate current operator for the scattering process of interest.
The bar over the sum represents an average over the orientations of the initial nuclear spin, and the sum

over final spins includes an implied integral over
d3pj

(2π)32Ej
for each component particle j of the final-state

hadronic system f .
Since the hadronic degrees of freedom are “integrated out” of the expression for Wµν given in eq. (5), the

hadronic tensor depends only on the 4-momentum transfer q. Following the conventions of ref. [3], I choose
to work in the laboratory frame3 with coordinates chosen so that the 3-momentum transfer q points along
the positive z direction. With this choice of frame, only five unique real-valued components of the hadronic
tensor are needed to compute neutrino-nucleus cross sections: W 00, Re(W 0z), W xx, Im(W xy), and W zz.
These reduce to two, W 00 and W xx, in the case of electromagnetic scattering cross sections. Note that, since
Wµν is Hermitian, all diagonal elements Wµµ are real.

The neutrino-nucleus differential cross section may now be written in the form [3, 4]

dσ

dEk′ d cos θk′
=

4 |k′|Ek′ C
π

[
B1 +

m′`
2

Ek′(Ek′ + |k′|)
B2

]
(6)

where
B1 ≡ 2W1 sin2(θk′/2) +W2 cos2(θk′/2)∓W3(Ek + Ek′) sin2(θk′/2) (7)

B2 ≡W1 cos θk′ − 1

2
W2 cos θk′ +

1

2
W3

[
Ek′ + |k′| − (Ek + Ek′) cos θk′

]
+

1

2
W4

[
m′`

2
cos θk′ + 2Ek′(Ek′ + |k′|) sin2(θk′/2)

]
− 1

2
W5

[
Ek′ + |k′|

]
(8)

and the upper (lower) sign in front of the W3 term should be chosen for neutrinos (antineutrinos). The
structure functions Wj may be expressed in terms of five hadronic tensor elements:

W1 =
W xx

2
(9)

W2 =
1

2

[
W 00 +W xx +

(q0)2

|q|2
(W zz −W xx)− 2

q0

|q|
Re(W 0z)

]
(10)

W3 =
Im(W xy)

|q|
(11)

W4 =
1

2|q|2
(W zz −W xx) (12)

W5 =
1

|q|

[
Re(W 0z)− q0

|q|
(W zz −W xx)

]
. (13)

For electromagnetic lepton-nucleus scattering, the differential cross section is [5]

dσ

dEk′ d cos θk′
= 2π σMott

[
q4

|q|4
W 00 +

(
2 sin2(θk′/2)

cos2(θk′/2)
− q2

|q|2

)
W xx

]
(14)

where the Mott cross section is given by

σMott =
α2 cos2(θk′/2)

4E2
k sin4(θk′/2)

. (15)

1The weak charged current operator jµ used in the Valencia calculation includes a factor of cos θc = Vud, where θc is the
Cabibbo angle. The factor of |Vud|2 that appears in the CC value of C given in eq. (2) should therefore be omitted when working
with precomputed hadronic tensor tables prepared for the Valencia model, since the tensor elements already include this factor.

2Here I choose states normalized so that
〈
p
∣∣p′〉 = (2π)3 2p0 δ(3)(p−p′). This normalization agrees with the conventions of

the Valencia model.
3That is, the rest frame of the initial target nucleus
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2 Implementation details

The hadronic tensor framework described in this note is implemented in GENIE using two abstract base
classes: (1) genie::HadronTensorI, which represents the hadronic tensor Wµν for a particular reaction
mode and target nucleus, and (2) genie::HadronTensorModelI, a genie::Algorithm which provides an
XML-configurable interface to a set of hadronic tensors to be used by a cross section model. The source files
defining these interfaces and their derived classes may be found in a new subfolder of the Generator source
code repository: src/Physics/HadronTensors.

2.1 HadronTensorI and derived classes

Figure 1 shows the relationships between the abstract base class HadronTensorI and its derived classes. All
HadronTensorI objects have member functions that compute each of the sixteen hadronic tensor elements,
with tt() returning W 00, xy() returning W xy, etc. A complex number is needed to represent the off-diagonal
elements of the tensor in the general case, so each of these functions returns a std::complex<double>. Pure
virtual member functions are also provided to compute the quantity LµνW

µν (contraction()), and to
indicate the range of validity of the tensor calculation along the q0 (q0Min(), q0Max()) and |q| (qMagMin(),
qMagMax()) axes. The only data member necessarily shared by all HadronTensorI objects is fTargetPDG,
which is the Particle Data Group (PDG) code for the target nucleus represented by the tensor.

The ValenciaHadronTensorI inherits from HadronTensorI but remains an abstract class. In addition to
enforcing some of the conventions of the Valencia model in the hadron tensor elements (e.g., Hermiticity and
choice of coordinates, as discussed in section 1.1), it also defines a member function dSigma dT dCosTheta()

which computes the differential cross section dσ/dEk′ d cos θk′ using the expressions given in this note. The
first of two required inputs to this function is a pointer to an Interaction object (with the Tl and ctl

kinematic variables set). The second is a “Q-value” used to adjust the value of q0 to account for binding
energy effects. In some models, the hadronic tensor should be evaluated for q̃0 instead of q0 = Ek − Ek′ ,
where

q̃0 ≡ q0 −Qval (16)

and Qval is the Q-value. For models that do not perform this sort of correction, a value of Qval = 0 should
be passed to dSigma dT dCosTheta().

The TabulatedValenciaHadronTensor class is currently the sole concrete implementation of the HadronTensorI
interface. It inherits from ValenciaHadronTensorI and computes tensor elements using bilinear interpola-
tion between precomputed values specified on a 2D grid in (q0, |q|) space. While much of the implementation
is directly adapted from the original Valencia MEC code, two improvements in the current approach are
worth discussing in this note. First, format of the data files used to define the precomputed tensor values is
now self-describing. Second, the bilinear interpolation is now done more efficiently thanks to a new template
class called BLI2DNonUnifObjectGrid. The next two subsections briefly describe each of these changes.

2.1.1 Input file format used by TabulatedValenciaHadronTensor

For notational simplicity in this subsection, I will denote the energy transfer q0 and the magnitude of the
3-momentum transfer |q| by ω and κ, respectively.

Precomputed elements of the hadronic tensor Wµν for a particular model and reaction mode (EMQE,
CCMEC, etc.) are provided to the TabulatedValenciaHadronTensor class in the form of a whitespace-
delimited text file that begins a comment line followed by the header

Z A type m n

in which Z (A) is the proton (mass) number of the target nucleus, type is a label (an arbitrary string which
contains no whitespace) describing the type of nuclear tensor represented by the file, and m (n) is the number
of grid points used along the ω (κ) axis. This header is followed by specifications of the ω and κ grid in the
form

w_flag w_spec

k_flag k_spec
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Figure 1: UML class diagram for HadronTensorI and its derived classes. Not all class members are shown.

HadronTensorI

- fTargetPDG : int

+ tt() : std::complex<double>
+ tx() : std::complex<double>
...
+ zz() : std::complex<double>
+ contraction( interaction : const Interaction*, Q value : double ) : double
+ q0Min() : double
+ q0Max() : double
+ qMagMin() : double
+ qMagMax() : double

ValenciaHadronTensorI

+ dSigma dT dCosTheta(interaction : const Interaction*, Q value : double) : double
+ dSigma dT dCosTheta rosenbluth(interaction : const Interaction*, Q value : double) : double

TableEntry

+ W00 : double
+ Wxx : double
+ Wzz : double
+ ImWxy : double
+ ReW0z : double

+ operator+(rhs : const TableEntry&) : TableEntry
+ operator*(d : double) : TableEntry
+ operator*(rhs : const TableEntry&) : TableEntry

TabulatedValenciaHadronTensor

- fq0Points : std::vector<double>
- fqmagPoints : std::vector<double>
- fEntries : std::vector<TableEntry>
- fGrid : BLI2DNonUnifObjectGrid<TableEntry>

+ TabulatedValenciaHadronTensor(table file name :
const std::string&)
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where w_flag and k_flag are integer codes that define the representation used for the ω and κ grids,
respectively. Two values are currently allowed for these flags. For w_flag = 0, a regular grid of ω values is
used, and w_spec has the form

w_start w_step

where w_start is the smallest tabulated value of ω and w_step is the step size between adjacent grid points.
For w_flag = 1, the ω grid is given explicitly in the file and may have irregular spacing between points.
In this case, w_spec contains a white-space delimited list of m strictly increasing ω values. The κ grid is
specified using an identical format for n grid points. All numerical values of ω and κ used to define the grid
should be given in GeV to match the GENIE convention for natural units.

Following the header, the elements of the nuclear tensor are tabulated for each grid point. The five
elements are tabulated for each grid point in order of increasing ω and κ, with κ increasing more rapidly.
Thus, the tensor elements appear in the file in the order

W(ω1, κ1) W(ω1, κ2) . . . W(ω1, κn)
W(ω2, κ1) W(ω2, κ2) . . . W(ω2, κn)

...
W(ωm, κ1) W(ωm, κ2) . . . W(ωm, κn)

where ωi is the ith grid point on the ω axis, κj is the jth grid point on the κ axis, and each of the W(ω, κ)
represents the sequence of real-valued tensor elements

W 00(ω, κ) Re
[
W 0z(ω, κ)

]
W xx(ω, κ) Im [W xy(ω, κ)] W zz(ω, κ)

given in GeV−1 as floating-point numbers.

2.1.2 The BLI2DNonUnifObjectGrid template class

In the original hadronic tensor implementation for the Valencia MEC model [1], the five tensor components
needed to compute cross sections were each interpolated individually using separate BLI2DGrid objects.
Because the same 2D grid is used to specify all five tensor components, this results in four redundant grid
searches (over potentially many grid points) in order to complete a single cross section evaluation.

To avoid this inefficiency, I created a new template class called BLI2DNonUnifObjectGrid. This class
performs bilinear interpolation in essentially the same way as the existing BLI2DNonUnifGrid class, but the
type used to evaluate the z coordinate at each grid point is now an arbitrary C++ object (whose type is taken
as a template parameter ZObject) instead of a double. The only restriction on the ZObject type used by
BLI2DNonUnifObjectGrid is that it must implement the member functions operator*(double) (scalar mul-
tiplication), operator*(const Object&) (vector dot product), and (operator+(const Object&) (vector
addition).

To evaluate tensor elements, the TabulatedValenciaHadronTensor class instantiates a BLI2DNonUnifObjectGrid
using objects of type TabulatedValenciaHadronTensor::TableEntry (abbreviated from now on as TableEntry)
to represent the z coordinate. Each TableEntry object contains a set of the five tensor elements labeled
W in section 2.1.1. When the bilinear interpolation is performed by BLI2DNonUnifObjectGrid, all five are
evaluated simultaneously, avoiding redundant grid lookups.

Taking advantage of some modern features of the C++ standard library (but not yet venturing into
C++11), the BLI2DNonUnifObjectGrid class stores grid points using vectors instead of C-style arrays, and
it relies on std::lower bound() to search the grid instead of the manual linear search used by the existing
BLI2DGrid objects.

2.2 HadronTensorModelI and its derived classes

In the new hadronic tensor framework, cross section models (represented in GENIE by XSecAlgorithmI

objects) are given access to the tensors needed to perform calculations by configuring an instance of
HadronTensorModelI as a subalgorithm. An inheritance diagram for this abstract base class is shown
in fig. 2.
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The HadronTensorModelI interface adds a single member function called GetTensor() to the Algorithm
class. This function takes two arguments: the PDG code for the target nucleus of interest and a code
representing the kind of tensor (e.g., one for a CCMEC or EMQE reaction) to be retrieved. The available
codes are tabulated as the enum type HadronTensorType t in the HadronTensorI.h header file. Note that
not all codes are used by all hadronic tensor models.

The TabulatedHadronTensorModelI abstract class inherits from HadronTensorModelI and may be used
for cross section calculations that rely on precomputed tensor data files. Tensor objects needed for calcula-
tions are loaded lazily and cached in a std::map for subsequent retrieval. The keys of this map have type
HadronTensorID, which is a simple struct combining the target PDG code and a HadronTensorType t enum
variable. The XML configuration parameters used to specify file search paths and file names for each tensor
are described in the following subsection. The actual parsing of the file is handled by the ParseTensorFile(),
which is left as a pure virtual function in TabulatedHadronTensorModelI. Each of the existing concrete sub-
classes of TabulatedHadronTensorModelI (NievesMECHadronTensorModel, SuSAv2MECHadronTensorModel,
and SuSAv2QELHadronTensorModel) implements this function by simply constructing a new
TabulatedValenciaHadronTensor object to be stored in the cache.

2.2.1 TabulatedHadronTensorModelI XML configuration

The names of the XML parameters used to configure an instance of TabulatedHadronTensorModelI are

DataPath A string specifying a folder in which to search for hadronic tensor data files

DataPathType A string describing how DataPath should be interpreted. Allowed values are currently
"relative" (the path is given relative to the $GENIE folder) and "absolute" (the path is an absolute
system path).

Type@Pdg=Target A string giving the file name (without the path prepended) to load for a given
HadronTensorType t (Type) and target nucleus PDG code (Target). For example, MEC_EM@Pdg=1000060120
is the parameter name that should be used to specify a file to load for a hadronic tensor representing
an EMMEC reaction on 12C. The strings representing each HadronTensorType t are given in the
function string to tensor type() in TabulatedValenciaHadronTensorModelI.cxx.

See the files config/NievesMECHadronTensorModel.xml and config/SuSAv2QELHadronTensorModel.xml

for concrete examples of a working XML configuration.

3 Validation

Some basic checks of the refactored Valencia MEC model against the original implementation have been
done, with more planned for the near future. As an example, section 3 shows close agreement between total
CCMEC cross section splines calculated using both versions of the code. The small discrepancies that do
exist are attributable to removal of some hard-coded constants and differences in the order of operations for
the bilinear interpolation (which of the two axes is used first).

This framework has also been extensively exercised as the SuSAv2 model implementation was being
validated against the original calculations. For more details on those results, see ref. [6].

4 Open Issues

4.1 Free Nucleon Cross Sections

For the case of QE scattering on a free nucleon target, there is only a single hadron in the final state. As

discussed in section 1.1 with reference to eq. (5), this implies that only a single integration over d3p′

(2π)32Ep′

(where p′ is the outgoing nucleon’s 3-momentum) appears in the sum over final states used to evaluate the
hadronic tensor. An integration over one of the kinematic variables describing the outgoing lepton (e.g., dEk′)
must therefore be performed in order to eliminate the energy-conserving delta function from the expression
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Figure 2: UML class diagram for HadronTensorModelI and its derived classes. Not all class members are
shown.

Algorithm

HadronTensorModelI

+ GetTensor(tensor pdg : int, type : HadronTensorType t) : const HadronTensorI*

TabulatedHadronTensorModelI

- fTensors : std::map<HadronTensorID, HadronTensorI*>

# LoadConfig() : void
+ GetTensor(tensor pdg : int, type : HadronTensorType t) : const HadronTensorI*
- ParseTensorFile(full file name : const std::string&) : HadronTensorI*

HadronTensorID

+ target pdg : int
+ type : HadronTensorType t

+ operator<(other : const
HadronTensorID&) : bool

NievesMECHadronTensorModel

SuSAv2MECHadronTensorModel SuSAv2QELHadronTensorModel
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Figure 3: Comparison of CCMEC splines generated for the Valencia MEC model using the original (blue)
and refactored (red, dashed) implementations
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for the differential cross section. This renders eq. (1) inappropriate to use for simulating lepton-nucleon
scattering, since the outgoing lepton energy and scattering angles are all treated as free parameters.

For the case of SuSAv2 QE event generation, then, a strategy other than the one presented here should
be used for free nucleon targets. One proposal is to use the Llewellyn-Smith model (with form factors chosen
to match the SuSAv2 conventions) to generate quasielastic events using standard GENIE methods for the free
nucleon case. Doing so, however, would require making the event generation chain for QE target-dependent,
which appears to be difficult to do within the current GENIE framework.

4.2 Duplicate cross section functions

As shown in fig. 1, the ValenciaHadronTensorI class has two member functions which both compute
dσ/dEk′ d cos θk′ , one using the expressions shown in this note, and the other which uses corresponding
expressions from the Rosenbluth formalism. The Rosenbluth functions were added during implementation
of the SuSAv2 model [6] to ease debugging. However, the two forms of the cross section should be equivalent.
Is there any value in keeping both functions? Or should we remove one version in favor of a more unified
framework?
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