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Abstract

In this report, we intend to set out the questions and problems which have arisen during the
implementation of the MK-model [1–4] in GENIE Generator.

The report consists of two parts. In the first part, we list yet unfixed bugs and mistakes,
because they require thorough study for their correction. In the second part, we list resolved
problems. The bugs and mistakes in this part have been fixed either after intensive discussions
with the author of the model1 or if the bugs are trivial.

This is a living document which is being constantly updated. Any comments, suggestions
and corrections are welcome.

In the current version of this report, we discuss the latest version of the Monoo code in which
she got out of the phase factors earlier belonging to the vector and axial parts of each reso-
nance amplitude and were the subject of fine-tuning. From our point of view, this simplification
(rejecting the phase factors) is a very right step.
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1In sections of this part, we point the version of the erratum or code where they were fixed.
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Chapter 1

Still unfixed problems, bugs and mistakes

1.1 Ambiguity in calculation of signs of the amplitudes

In this section, we show that one will get a contradiction in calculation of the helicity amplitudes
if one try to calculate these by two different ways: directly and by using some known symmetry
relations. First, we recall the general formulas.

1.1.1 General relations

From ((3.34)– [2])1 it follows that

F̃
λk(p)
λ2,λ1

(θ, φ) =
1

2M
〈Nπ, λ2|eαpJVα |N, λ1〉, G̃

λk(p)
λ2,λ1

(θ, φ) =
1

2M
〈Nπ, λ2|eαpJAα |N, λ1〉, (1.1)

where ep is the gauge boson polarization, p = {L,R,+,−}, λk(L) = −1, λk(R) = 1, and
λk(±) = 0. We will omit argument p in λk when it is clear from context. So, from hereon
λk denotes either the symbols L,R,+,− or a relevant number, as the context admits. Let’s
now express the matrix element of single pion production as product of two matrix elements:
resonance production and resonance decay to nucleon-pion pair (similar to Eq. ((4.18)– [2])).

〈Nπ, λ2|eαJα|N, λ1〉 = 〈Nπ, λ2|R, λ〉〈R, λ|eαJα|N, λ1〉, (1.2)

where for CC processes Jα = JVα − JAα . First, let’s find the matrix element for the resonance
production. It can be found from Eq. ((3.17)– [2]) that the convolution of lepton current with
helicity λ and hadronic current is

eαλJα = (CLλe
α
L + CRλe

α
R + Cλe

α
λ) Jα, (1.3)

where λ = −(+) denotes left(right) lepton helicity, and eαL, eαR, eα+ and eα− are defined by Eq. (1.28).
Using Eqs. ((4.5, 4.6)– [2]), the matrix element of resonance production can be written as

〈R, λ|eαλJα|N, λ1〉 = 2MR〈R, λ|(CLλeαL + CRλe
α
R + Cλe

α
λ)Fα|N, λ1〉

= 2MR〈R, λ|CLλF− + CRλF+ + CλF
(λ)
0 |N, λ1〉,

(1.4)

1Here and further, we denote by ((A)–[B]) the formula (A) from Ref. [B].

1



where

F− = eαLFα = +
1√
2

(Fx − iFy), F
(−)
0 = eα−Fα =

1√
Q2

(
Q?−F0 + ν?−Fz

)
,

F+ = eαRFα = − 2√
2

(Fx + iFy), F
(+)
0 = eα+Fα =

1√
Q2

(
Q?+F0 + ν?+Fz

)
,

at that (F−)† = −F+, (F
(−)
0 )† = F

(−)
0 and (F

(+)
0 )† = F

(+)
0 . The resonance production amplitudes

in the RS model [5] are expressed as

f±|2sz | = 〈N, sz ± 1|F±|R, sz〉, f0± = 〈N, sz ±
1

2
|F (±)

0 |R, sz ±
1

2
〉. (1.5)

We can choose the spin quantization axis in such a way that λ1 = −s1z, λ2 = −s2z, and λ = sRz.
Therefore,

〈R, λ|eαLFα|N1, λ1 = −(λ+ 1)〉 = 〈R, λ|F−|N1, λ1 = −(λ+ 1)〉
= 〈N1, λ1 = −(λ+ 1)|(F−)†|R, λ〉∗

= 〈N1, λ1 = −(λ+ 1)| − F+|R, λ〉∗

= − 〈N1, s1z = (λ+ 1)|F+|R, sRz = λ〉∗

= − f ∗+|2λ| = −f+|2λ|
〈R, λ|eαRFα|N1, λ1 = −(λ− 1)〉 = 〈R, λ|F+|N1, λ1 = −(λ− 1)〉

= 〈N1, λ1 = −(λ− 1)|(F+)†|R, λ〉∗

= 〈N1, λ1 = −(λ− 1)| − F−|R, λ〉∗

= − 〈N1, s1z = (λ− 1)|F−|R, sRz = λ〉∗

= − f ∗−|2λ| = −f−|2λ|,

(1.6)

〈R, λ = ±1

2
|eα−Fα|N1, λ1 = ∓1

2
〉 = 〈R, λ = ±1

2
|F (−)

0 |N1, λ1 = ∓1

2
〉

= 〈N1, λ1 = ∓1

2
|(F (−)

0 )†|R, λ = ±1

2
〉∗

= 〈N1, λ1 = ∓1

2
|F (−)

0 |R, λ = ±1

2
〉∗

= 〈N1, s1z = ±1

2
|F (−)

0 |R, sRz = ±1

2
〉∗

= (f
(−)
0± )∗ = f

(−)
0± ,

〈R, λ = ±1

2
|eα+Fα|N1, λ1 = ∓1

2
〉 = 〈R, λ = ±1

2
|F (+)

0 |N1, λ1 = ∓1

2
〉

= 〈N1, λ1 = ∓1

2
|(F (+)

0 )†|R, λ = ±1

2
〉∗

= 〈N1, λ1 = ∓1

2
|F (+)

0 |R, λ = ±1

2
〉∗

= 〈N1, s1z = ±1

2
|F (+)

0 |R, sRz = ±1

2
〉∗

= (f
(+)
0± )∗ = f

(+)
0± ,

(1.7)
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where we use the property that RS helicity amplitudes f±|2sz | and f0± are real values (see Table
II of Ref. [5]). The resonance decay matrix element postulated by Minoo is given by Eq ((4.20)–
[2]):

〈Nπ, λ2|R, λ〉 = σDCj
Nπ

√
χEκC

I
NπfBW, (1.8)

where the meaning of all symbols can be found in Ref. [2].
The relation between the standard helicity amplitudes and helicity amplitudes defined by

Eq. (1.1) is given by Eq. ((3.67)– [2]):

Fµ,λ(θ, φ) = ei[λ1π+λ2(π+2φ)]F̃ λk
λ2,λ1

(θ, φ), Gµ,λ(θ, φ) = ei[λ1π+λ2(π+2φ)]G̃λk
λ2,λ1

(θ, φ), (1.9)

where λ is spin of resonance, λ = λk − λ1, µ = −λ2, and λ ∈ {−3
2
,−1

2
, 1
2
, 3
2
}, µ ∈ {−1

2
, 1
2
}.

The multipole expansion of Fµ,λ(θ, φ):

Fµ,λ(θ, φ) =
∑
j

{
F j
µ,λ, if λk is L or R
F 0j
µ,λ, if λk is + or –

}
(2j + 1)djλ,µ(θ)ei(λ−µ)φ,

Gµ,λ(θ, φ) =
∑
j

{
Gj
µ,λ, if λk is L or R

G0j
µ,λ, if λk is + or –

}
(2j + 1)djλ,µ(θ)ei(λ−µ)φ.

(1.10)

By comparing Eqs. (1.9) and (1.10) one obtains:

F̃ λk
λ2,λ1

(θ, φ) = (−1)(λ1+λ2)
∑
j

{
F j
µ,λ, if λk is L or R
F 0j
µ,λ, if λk is + or –

}
(2j + 1)djλ,µ(θ)ei(λk−λ1−λ2)φ,

G̃λk
λ2,λ1

(θ, φ) = (−1)(λ1+λ2)
∑
j

{
Gj
µ,λ, if λk is L or R

G0j
µ,λ, if λk is + or –

}
(2j + 1)djλ,µ(θ)ei(λk−λ1−λ2)φ.

(1.11)

where the values F j
µ,λ, F

0j
µ,λ, G

j
µ,λ, G

0j
µ,λ are the coefficients of multipole expansion. The ampli-

tudes F j
µ,λ are defined similarly to Eq. ((30)– [6]) (up to a common factor). The superscript ”0“

in Eqs. (1.10) and (1.11) hereinafter is omitted when it does not lead to misunderstanding. The
standard helicity amplitudes possess the following symmetry properties:

F−µ,−λ(θ, φ) = −ei(λ−µ)(π−2φ)Fµ,λ(θ, φ). (1.12)

Substituting Eq. (1.10) into Eq. (1.12) we obtain

F−µ,−λ(θ, φ) = −ei(λ−µ)(π−2φ)
∑
j

F j
µ,λ(2j + 1)djλ,µ(θ)ei(λ−µ)φ

= −ei(λ−µ)π
∑
j

F j
µ,λ(2j + 1)djλ,µ(θ)e−i(λ−µ)φ.

(1.13)

Using the symmetry properties of the functions djλµ (see Eq. ((A1)– [7]))

djλ,µ(θ) = dj−µ,−λ(θ) = (−1)λ−µdjµ,λ(θ), (1.14)

one obtains

djλ,µ(θ) = dj−µ,−λ,(θ) = (−1)λ−µdj−λ,−µ(θ). (1.15)
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Then Eq. (1.13) can be rewritten as

F−µ,−λ(θ, φ) = −
∑
j

F j
µ,λ(2j + 1)dj−λ,−µ(θ)e−i(λ−µ)φ. (1.16)

From the other hand, if one put −µ and −λ instead of µ and λ in Eq. (1.10)

F−µ,−λ(θ, φ) =
∑
j

F j
−µ,−λ(2j + 1)dj−λ,−µ(θ)e−i(λ−µ)φ. (1.17)

Subtracting Eq. (1.17) from Eq. (1.16) we find:

0 =
∑
j

(F j
−µ,−λ + F j

µ,λ)(2j + 1)dj−λ,−µ(θ)e−i(λ−µ)φ. (1.18)

Now let’s use the orthonormality of the functions∫ π

0

djλ,µ(θ)dj
′

λ,µ(θ)d cos(θ) =
2

2j + 1
δjj′ . (1.19)

Multiplying Eq. (1.17) by dj
′

λ,µ and integrating, we obtain

F j
−µ,−λ = −F j

µ,λ. (1.20)

Studying Table II of Ref [5] one can note that the following expressions are valid:

for j = l +
1

2
: fV+1,+3,0+ = −fV−1,−3,0−, fA+1,+3,0+ = +fA−1,−3,0−,

for j = l − 1

2
: fV+1,+3,0+ = +fV−1,−3,0−, fA+1,+3,0+ = −fA−1,−3,0−.

(1.21)

We have prepared everything needed to make calculation by both mentioned ways. Let’s
consider, as an example, the calculation of F̃L

1
2

1
2

(θ, φ) for which λ2 = 1
2
, λ1 = 1

2
, λk = −1, µ = −1

2

and λ = −3
2
.

1.1.2 Derivation by direct way

Using Eqs. (1.1)–(1.8) and (1.11) we can find the coefficients of multipole expansion for F̃−11
2
, 1
2

(θ, φ):

F j

− 1
2
,− 3

2

=
1

2M
〈Nπ, λ2 =

1

2
|eαLJVα |N, λ1 =

1

2
〉

=
1

2M
〈Nπ, λ2 =

1

2
|R, λ = −3

2
〉〈R, λ = −3

2
|eαLJVα |N, λ1 =

1

2
〉

=
MR

M
σDCj

Nπ

√
χEκC

I
NπfBW(−fV+3).

(1.22)
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1.1.3 Derivation by using symmetry properties

Using the symmetry property (1.20) for the multipole expansion coefficients, one obtains:

F j

− 1
2
,− 3

2

= −F j
1
2
, 3
2

. (1.23)

The values F j
1
2
, 3
2

are multipole expansion coefficients for the amplitude F̃+1
− 1

2
,− 1

2

(θ, φ). Then

F j

− 1
2
,− 3

2

= − 1

2M
〈Nπ, λ2 = −1

2
|R, λ =

3

2
〉〈R, λ =

3

2
|eαRJVα |N, λ1 = −1

2
〉

=
MR

M
σDCj

Nπ

√
χEκC

I
NπfBWf

V
−3.

(1.24)

1.1.4 Paradox and probable explanation

Equations (1.22) and (1.24) are consistent only for the resonances with j = l + 1
2

(for which
fV−3 = −fV+3) as it can be seen from Eq. (1.21). But there is evident contradiction for the
resonances with j = l − 1

2
(for which fV−3 = +fV+3).

For example, we present in Table 1.1 the calculation of all amplitudes by the direct method,
which, in our opinion, does not lead to any contradictions. The signs, which differ from Minoo’s
ones, are marked by red color. The latest versions of the amplitudes calculated by Minoo are
presented in Table III of erratum [4] and reproduced in Table 1.2. One can see that almost all
amplitude signs differ from those calculated by the direct method.

This contradiction can be resolved if one takes into account that the symmetry condition
stated by Eqs. ((15a,15b)– [6]) are valid only for the resonances with j = l + 1

2
. Indeed, the

symmetry property (1.12) in general case for reaction a+ b→ c+ d is given by Eq. ((44)– [7]):

F−λc,−λd;−λa,−λb(θ, φ) = ηgFλc,λd;λa,λb(θ, π − φ), ηg =
ηcηd
ηaηb

(−1)sc+sd−sa−sb , (1.25)

where ηa, ηb, ηc, ηd – parity factors and sa, sb, sc, sd – total angular momentum of particles a, b, c
and d. For our case a = N, b = W±, c = N ′, d = π. When we consider the final state N ′π with
j = l + 1

2
then sN + sW = 1

2
+ sW (the W-boson hits nucleon at rest) and sN ′ + sπ = j = l + 1

2
;

and when the final state has j = l − 1
2

then sN ′ + sπ = j = l − 1
2
. The factors ηN , ηW , ηN ′ , ηπ are

the same for both cases. Therefore

for j = l +
1

2
: (−1)sN′+sπ−sN−sW = (−1)l+

1
2
− 1

2
−sW = (−1)l−sW ,

for j = l − 1

2
: (−1)sN′+sπ−sN−sW = (−1)l−

1
2
− 1

2
−sW = (−1)l−1−sW .

Thus the factors ηg differ in sign for the two cases j = l + 1
2

and j = l − 1
2
, i.e. if the following

symmetry relation F j
−µ,−λ(θ, φ) = F j

µ,λ(θ, π−φ) is hold for j = l+ 1
2

then the analogous relation for
j = l − 1

2
is F j

−µ,−λ(θ, φ) = −F j
µ,λ(θ, π − φ). We account for that F j

µ,λ(θ, φ) ≡ F j
λq−λ2,λk−λ1(θ, φ) ≡

Fλq ,λ2;λk,λ1(θ, φ); the helicity of pion λq = 0, the helicity of initial and final nucleons λ1 = λ2 = 1
2
,

the helicity of W-boson λk ∈ {0, 1,−1} as stated above.
It is difficult to understand which set of the amplitude signs is used in Minoo’s code. The

problem is that the signs belonging to one terms is sometimes assigned to another term. Con-
sidering numerous versions that increased as a result of several corrections, the problem with
signs becomes even more complicated than it was before corrections. Several examples of the
problem with signs:
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• the sign of the amplitude itself, which depends on whether j is equal to l + 1
2

or l − 1
2
;

• the sign of the functions djλ,µ, because Minoo coded only djλ,µ with λ > 0 and then she
finds other values using the symmetry properties of the d-functions (1.14) and (1.15);

• the sign of σD, which sits in the term Dj(R) (see Eq.(25) of Ref. [3]) and is different from
the original Rein’s signs 2 (see Table 5.3 in Ref. [1]).

However, one thing is obvious: the amplitude signs in the code definitely differ from those in
the erratum [3]. Let’s note that it is impossible to control (adjust) the signs by comparison of
calculations with experimental data since currently available data are very slowly sensible to
these signs. But interference between the high-mass resonances is very responsible to them.
This will be important in the future experiments.

Currently, we use the signs as is in Minoo’s code. However it poses a problem as it, again,
is very difficult (if not impossible) to check whether the signs are correct (see also sections 2.6
and 2.12).

λ2 λ1 F̃L
λ2,λ1

(θ, φ)− G̃L
λ2,λ1

(θ, φ) F̃R
λ2,λ1

(θ, φ))− G̃R
λ2,λ1

(θ, φ))

1
2

1
2

−
∑

j
2j+1√

2
Dj(R)f+3(R)dj3

2
1
2

(θ)e−2iφ +
∑

j
2j+1√

2
Dj(R)f−1(R)dj1

2
− 1

2

(θ)

−1
2

1
2

+
∑

j
2j+1√

2
Dj(R)f+3(R)dj3

2
− 1

2

(θ)e−iφ +
∑

j
2j+1√

2
Dj(R)f−1(R)dj1

2
1
2

(θ)eiφ

1
2
−1

2
+
∑

j
2j+1√

2
Dj(R)f+1(R)dj1

2
1
2

(θ)e−iφ +
∑

j
2j+1√

2
Dj(R)f−3(R)dj3

2
− 1

2

(θ)eiφ

−1
2
−1

2
−
∑

j
2j+1√

2
Dj(R)f+1(R)dj1

2
− 1

2

(θ) +
∑

j
2j+1√

2
Dj(R)f−3(R)dj3

2
1
2

(θ)e2iφ

F̃−λ2,λ1(θ, φ)− G̃−λ2,λ1(θ, φ) F̃+
λ2,λ1

(θ, φ)− F̃+
λ2,λ1

(θ, φ)

1
2

1
2

+ |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(−)
0− (R)dj− 1

2
− 1

2

(θ)e−iφ + |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(+)
0− (R)dj− 1

2
− 1

2

(θ)e−iφ

−1
2

1
2

+ |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(−)
0− (R)dj− 1

2
1
2

(θ) + |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(+)
0− (R)dj− 1

2
1
2

(θ)

1
2
−1

2
+ |k|√

Q2

∑
j
2j+1√

2
Dj(R)f

(−)
0+ (R)dj1

2
− 1

2

(θ) + |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(+)
0+ (R)dj1

2
− 1

2

(θ)

−1
2
−1

2
+ |k|√

Q2

∑
j
2j+1√

2
Dj(R)f

(−)
0+ (R)dj1

2
1
2

(θ)eiφ + |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(+)
0+ (R)dj1

2
1
2

(θ)eiφ

Table 1.1: Vector helicity amplitudes of resonant interactions calculated by direct method.

2The decay sign of resonance P11(1710) given in Ref. [5] is equal to ”+”. It was changed in Ref. [6] and is now
equal to ”–”.
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λ2 λ1 F̃L
λ2,λ1

(θ, φ)− G̃L
λ2,λ1

(θ, φ) F̃R
λ2,λ1

(θ, φ))− G̃R
λ2,λ1

(θ, φ))

1
2

1
2

−
∑

j
2j+1√

2
Dj(R)f+3(R)dj3

2
1
2

(θ)e−2iφ −
∑

j
2j+1√

2
Dj(R)f−1(R)dj1

2
− 1

2

(θ)

−1
2

1
2

∓
∑

j
2j+1√

2
Dj(R)f+3(R)dj3

2
− 1

2

(θ)e−iφ ±
∑

j
2j+1√

2
Dj(R)f−1(R)dj1

2
1
2

(θ)eiφ

1
2
−1

2
+
∑

j
2j+1√

2
Dj(R)f+1(R)dj1

2
1
2

(θ)e−iφ −
∑

j
2j+1√

2
Dj(R)f−3(R)dj3

2
− 1

2

(θ)eiφ

−1
2
−1

2
±
∑

j
2j+1√

2
Dj(R)f+1(R)dj1

2
− 1

2

(θ) ±
∑

j
2j+1√

2
Dj(R)f−3(R)dj3

2
1
2

(θ)e2iφ

F̃−λ2,λ1(θ, φ)− G̃−λ2,λ1(θ, φ) F̃+
λ2,λ1

(θ, φ)− F̃+
λ2,λ1

(θ, φ)

1
2

1
2
∓ |k|√

Q2

∑
j
2j+1√

2
Dj(R)f

(−)
0− (R)dj− 1

2
− 1

2

(θ)e−iφ ∓ |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(+)
0− (R)dj− 1

2
− 1

2

(θ)e−iφ

−1
2

1
2

− |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(−)
0− (R)dj− 1

2
1
2

(θ) − |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(+)
0− (R)dj− 1

2
1
2

(θ)

1
2
−1

2
± |k|√

Q2

∑
j
2j+1√

2
Dj(R)f

(−)
0+ (R)dj1

2
− 1

2

(θ) ± |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(+)
0+ (R)dj1

2
− 1

2

(θ)

−1
2
−1

2
− |k|√

Q2

∑
j
2j+1√

2
Dj(R)f

(−)
0+ (R)dj1

2
1
2

(θ)eiφ − |k|√
Q2

∑
j
2j+1√

2
Dj(R)f

(+)
0+ (R)dj1

2
1
2

(θ)eiφ

Table 1.2: Vector helicity amplitudes of resonant interactions calculated by using symmetry
properties and presented in Table III of Ref. [4].

7



1.2 Problem with transition from neutrino to antineutrino
case

1.2.1 Derivation of the transition rules

Since this problem is one of the key points, we consider it in some detail. Let’s start with a
reminder of several basic formulas derived in Ref. [8]. The components of the leptonic current
with the lepton helicity λ measured in lab. frame, can be written in the resonance rest frame
(RRF)3 as

j?0 = Nλm`
Eν
W

(1− λ cos θ) (M − E` − λP`) ,

j?x = Nλm`
Eν
|q|

sin θ (P` − λEν) ,

j?y = iλNλm`Eν sin θ,

j?z = Nλm`
Eν
|q|W

(1− λ cos θ) [(Eν + λP`) (M − E`) + P` (λEν + 2Eν cos θ − P`)] .

(1.26)

Here Eν , E`, θ, and m` are, respectively, the incident neutrino energy, lepton energy, scattering
angle, and mass of the lepton, P` =

√
E2
` −m2

` , q = kν − k`, the vectors kν and k` are the
3-momenta of the neutrino and lepton, respectively. All variables are written in lab. frame. The
normalization constant Nλ is expressed in terms of the kinematic variables,

Nλ =
1

m`

√
E` ∓ λP`

Eν (1∓ λ cos θ)
, (1.27)

where the upper (lower) sign is for ν` (ν`).
On the other hand, in the spirit of the RS model, the leptonic current can be treated as

the intermediate W boson polarization 4-vector and may be decomposed into three polariza-
tion 4-vectors eL, eR, and eS(λ) ≡ e(λ) corresponding to left-handed, right-handed and scalar
polarizations:

jαλ = K−1
[
cλLe

α
L + cλRe

α
R + cλSe

α
(λ)

]
, (1.28)

eαL =
1√
2

(0, 1,−i, 0),

eαR =
1√
2

(0,−1,−i, 0),

eα(λ) =
1√
Q2

(
Q?(λ), 0, 0, ν?(λ)

)
.

(1.29)

Note that the 4-vectors eL and eR are exactly the same as in the RS model [5], while e(λ) has
been modified to include the lepton mass effect; its components are given by

Q?(λ) =
K
√
Q2

cλS
j?0 , ν?(λ) =

K
√
Q2

cλS
j?z , K =

|q|
Eν
√

2Q2
. (1.30)

3Here and below we mark this frame with asterisk (?).
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The polarization vectors form an orthonormal set:

eαi ejα = δij, i, j = L,R, S.

Taking this into account, the coefficients cλi are explicitly defined through the components jλα in
RRF as

cλL =
K√

2

(
j?x + ij?y

)
, cλR = − K√

2

(
j?x − ij?y

)
, cλS = K

√
|(j?0)2 − (j?z )

2|. (1.31)

The sign in the last relation is chosen to be positive, by definition. The currents for neutrino and
antineutrino can be related with Eqs. (2) and (3) in Ref. [5]

j
λ

α = −λ
(
j−λα
)∗
. (1.32)

This identity is an intrinsic property of the leptonic current and does not depend on the nature
of the process in which it participates. By sing Eqs. (1.26) and (1.32) we can write[

j?λ0
]
ν

= − λ
[
j?−λ0

]
ν
,[

j?λx
]
ν

= − λ
[
j?−λx

]
ν
,[

j?λy
]
ν

= + λ
[
j?−λy

]
ν
,[

j?λz
]
ν

= − λ
[
j?−λz

]
ν
.

(1.33)

The identities (1.31) and (1.33) allow us to derive relations between the coefficients cL, cR and
cS for the neutrino and antineutrino cases:[

cλL
]
ν

=
K√

2

([
j?λx
]
ν

+ i
[
j?λy
]
ν

)
=

K√
2

(
−λ
[
j?−λx

]
ν

+ iλ
[
j?−λy

]
ν

)
= λ

[
c−λR
]
ν
,[

cλR
]
ν

= − K√
2

([
j?λx
]
ν
− i
[
j?λy
]
ν

)
= − K√

2

(
−λ
[
j?−λx

]
ν
− iλ

[
j?−λy

]
ν

)
= λ

[
c−λL
]
ν
,[

cλS
]
ν

= K
√∣∣([j?λ0 ]ν)2 − ([j?λz ]ν)

2
∣∣ = K

√∣∣(−λ [j?−λ0

]
ν
)2 − (−λ [j?−λz ]ν)

2
∣∣

= ± λK
√∣∣([j?−λ0

]
ν
)2 − ([j?−λz ]ν)

2
∣∣ = ±λ

[
c−λS
]
ν
.

Considering that

K−1
[
cλS
]
ν

[
eα(λ)
]
ν

=
([
j?λ0
]
ν
, 0, 0,

[
j?λz
]
ν

)
= −λ

([
j?−λ0

]
ν
, 0, 0,

[
j?−λz

]
ν

)
= − λK−1

[
c−λS
]
ν

[
eα(−λ)

]
ν
,

we obtain[
cλS
]
ν

[
eα(λ)
]
ν

= −λ
[
c−λS
]
ν

[
eα(−λ)

]
ν
. (1.34)

To derive the exact relation for the coefficient cλS, let’s consider the limiting case of a massless
final-state lepton. Since the massless lepton helicity can only be -1 (for incoming neutrino ) or
+1 (for incoming antineutrino), we have[

Q?(−1)
]
ν
→ |q?| and

[
ν?(−1)

]
ν
→ ν?[

Q?(+1)

]
ν
→ |q?| and

[
ν?(+1)

]
ν
→ ν?

}
as m` → 0.
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This implies[
Q?(−1)

]
ν
→
[
Q?(+1)

]
ν

and
[
ν?(−1)

]
ν
→
[
ν?(+1)

]
ν

as m` → 0. (1.35)

If the equality
[
cλS
]
ν

= λ
[
c−λS
]
ν

is valid then, according to Eq. (1.34),[
eα(λ)
]
ν

= −
[
eα(−λ)

]
ν
. (1.36)

In the opposite case, from the equality
[
cλS
]
ν

= −λ
[
c−λS
]
ν

it follows that[
eα(λ)
]
ν

=
[
eα(−λ)

]
ν
. (1.37)

Since Eq. (1.36) contradicts the conditions (1.35), only the equality
[
cλS
]
ν

= −λ
[
c−λS
]
ν

and
Eq. (1.37) is correct, from which it follows that[

Q?(λ)
]
ν

=
[
Q?(−λ)

]
ν
,
[
ν?(λ)
]
ν

=
[
ν?(−λ)

]
ν
.

As a result, we get[
Q?(λ)

]
ν

=
[
Q?(−λ)

]
ν
,
[
ν?(λ)
]
ν

=
[
ν?(−λ)

]
ν
, (1.38)[

cλL
]
ν

= λ
[
c−λR
]
ν
,
[
cλR
]
ν

= λ
[
c−λL
]
ν
,
[
cλS
]
ν

= −λ
[
c−λS
]
ν
. (1.39)

We want to stress that Eqs. (1.38) and (1.39) were obtained by using only the properties of the
leptonic current and do not depend on features of the hadronic current.

Minoo works in the similar framework. The differences between her notations and those
used in Ref. [8] are:

• leptonic current denoted as εαλ is equal to 2jλα (compare Eq. (1) in Ref. [8] and Eq. (5) in
Ref. [3]) and is expressed in terms of kinematic variables defined in RRF, while in Ref. [8]
it is expressed through the lab. frame kinematic variables;

• The coefficients cλL, cλR, and cλS used in Ref. [8] are denoted in Minoo’s paper as CLλ, CRλ,
and Cλ, respectively;

• the polarization vectors eαL, eαR, and eα(λ) used in Ref. [8] are denoted as, respectively, eαL,
eαR, and eαλ in Minoo’s paper.

The corresponding values defined in Minoo’s paper [3] are following:

eαL =
1√
2

(
0, 1, −i, 0

)
,

eαR =
1√
2

(
0, −1, −i, 0

)
,

eαλ =
1√

|(ε0λ)2 − (ε3λ)
2|
(
ε0λ, 0, 0, ε3λ

)
.

(1.40)

and

CLλ =
1√
2

(
ε1λ + iε2λ

)
,

CRλ = − 1√
2

(
ε1λ − iε2λ

)
,

Cλ =
√
|(ε0λ)2 − (ε3λ)

2|.

(1.41)
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It can be seen that the values eαL and eαR from Refs. [3] and [8] are identical. Taking into account
Eqs. (1.28)–(1.31), (1.40), (1.41) and εαλ = 2jλα we can relate the corresponding values:

CLλe
α
L + CRλe

α
R + Cλe

α
λ = 2K−1

[
cλLe

α
L + cλRe

α
R + cλSe

α
(λ)

]
⇓

CLλ = 2K−1cλL, CRλ = 2K−1cλR, Cλe
α
λ = 2K−1cλSe

α
(λ),

Cλ =
√
|(ε0λ)2 − (ε3λ)

2| = 2K−1K
√
|(j?0)2 − (j?z )

2| = 2K−1cλS

⇓
eαλ = eα(λ).

Thus we obtained

CLλ = 2K−1cλL, CRλ = 2K−1cλR, Cλ = 2K−1cλS, eαλ = eα(λ). (1.42)

Therefore the relation similar to (1.39) must be hold:

[CLλ ]ν = λ
[
CR−λ

]
ν
, [CRλ ]ν = λ

[
CL−λ

]
ν
, [CSλ ]ν = −λ

[
CS−λ

]
ν
. (1.43)

For example, let us prove the first relation:

[CLλ ]ν = 2K−1
[
cλL
]
ν

= 2K−1λ
[
c−λR
]
ν

= λ
[
CR−λ

]
ν
.

However, in Minoo’s paper it is proposed to use different relation (see words after Eq. (18) in
Ref. [3] or words after Eq. (3.60) in Ref. [2]):

[CLλ ]ν = [CRλ ]ν , [CRλ ]ν = [CLλ ]ν , [CSλ ]ν = [CSλ ]ν . (1.44)

The last conditions can be rewritten in terms of Ref. [8] as follows[
cλL
]
ν

=
[
cλR
]
ν
,
[
cλR
]
ν

=
[
cλL
]
ν
,
[
cλS
]
ν

=
[
cλS
]
ν
, (1.45)

and one should apply this ”recipe” to final formula for the differential cross section. This means
that one can do all calculation exactly as as for the neutrino case and then replace the coeffi-
cients cλi for neutrino by ones for antineutrino.

1.2.2 Application to the cross sections

Let’s see what this leads to. First, we study whether there is a difference between the double-
differential cross section dσ/dWdQ2 and the polarization density matrix

ρ =
1

2
(1 + σP)

obtained by using the relations (1.39) and (1.45) (or (1.43) and (1.44)) in the formalism
developed in Ref. [8]. Again let us remind all needed points here.

The elements of the polarization matrix are given by following formulas (see Ref. [8]):

ρλλ′ =
Σλλ′

Σ++ +Σ−−
, Σλλ′ =

∑
i=L,R,S

cλi c
λ′

i σ
λλ′

i , (1.46)
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and the differential cross section of unpolarized lepton production is given by

d2σ

dQ2dW 2
=
G2
F cos2 θCQ

2

2π2M |q|2
(Σ++ +Σ−−) . (1.47)

The partial cross sections are found to be the bilinear superpositions of the reduced amplitudes
for producing a Nπ final state with allowed isospin by a charged isovector current:

σλλ
′

L,R =
πW

2M

(
Aλ±3A

λ′

±3 + Aλ±1A
λ′

±1

)
, (1.48)

σλλ
′

S =
πM |q|2

2WQ2

(
Aλ0+A

λ′

0+ + Aλ0−A
λ′

0−

)
. (1.49)

The amplitudes for neutrino induced reactions are

Aλκ
(
pπ+

)
=
√

3
∑

(I=3/2)

aλκ (N∗3 ) , (1.50)

Aλκ
(
pπ0
)

=
√

2
3

∑
(I=3/2)

aλκ (N∗3 )−
√

1
3

∑
(I=1/2)

aλκ (N∗1 ) , (1.51)

Aλκ
(
nπ+

)
=
√

1
3

∑
(I=3/2)

aλκ (N∗3 ) +
√

2
3

∑
(I=1/2)

aλκ (N∗1 ) . (1.52)

Here κ = ±3, ±1, 0± and only those resonances are allowed to interfere which have the same
spin and orbital angular momentum.

Any amplitude aλκ (N∗ı ) referring to one single resonance N∗ı in a definite state of isospin,
charge and helicity consists of two factors which describe the production and subsequent decay
of the resonance:

aλκ (N∗ı ) = fλκ (νN → N∗ı ) η(N∗ı → Nπ) ≡ fλ(ı)κ η(ı).

The decay amplitudes, η(ı), can be split into three factors,

η(ı) = sign(N∗ı )
√
χı η

(ı)
BW(W ),

irrespective of isospin, charge or helicity of the resonance. Here, the first factor is the decay
sign for resonance N∗ı (see Table III of Ref. [5]), χ

ı
is the elasticity of the resonance taking

care of the branching ratio into the πN final state and η(ı)BW(W ) is the properly normalized Breit-
Wigner term with the running width specified by the πN partial wave from which the resonance
arises (Eq. (2.31) in Ref. [5]).

The resonance production amplitudes, fλ(ı)κ , can be calculated within the FKR quark model
in exactly the same way as in Ref. [5]. It can be shown that they have the same structure as that
given in Table II of Ref. [5] with the only important difference: the three coefficient functions S,
B and C involved into the definitions of the amplitudes have to be modified. Indeed, since the
structure of the polarization 4-vector eα(λ) has been changed with respect to that of the original
RS model (by including the lepton mass and spin), we have to recalculate its inner products
with the vector and axial hadronic currents. To do this, we used the explicit form for the FKR
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currents given by Ravndal [9]. As a result, the coefficients S, B and C (and thus the resonance
production amplitudes) become parametricaly dependent of the lepton mass and helicity:

S(λ) = SV(λ) =
(
ν?(λ)ν

? −Q?(λ) |q?|
)(

1 +
Q2

M2
− 3W

M

)
GV (Q2)

6 |q|2
,

B(λ) = BA
(λ) =

√
Ω

2

(
Q?(λ) + ν?(λ)

|q?|
aM

)
ZGA (Q2)

3W |q?|
,

C(λ) = CA
(λ) =

[(
Q?(λ) |q?| − ν?(λ)ν?

)(1

3
+

ν?

aM

)
+ν?(λ)

(
2

3
W − Q2

aM
+

nΩ

3aM

)]
ZGA (Q2)

2W |q?|
.

Here

ν? = E?
ν − E?

` =
Mν −Q2

W
, a = 1 +

W 2 +Q2 +M2

2MW
,

GV,A (Q2) are the vector and axial transition form factors and the remaining notation is explained
in Ref. [5]. Other 5 coefficients listed in Eq. (3.11) of Ref. [5] are left unchanged.

The resonance production amplitudes, fλκ with κ = ±3,±1 depend on neither final lepton
helicity nor initial lepton (neutrino or antineutrino)4:[

fλκ
]
ν

=
[
f−λκ

]
ν

=
[
fλκ
]
ν

=
[
f−λκ

]
ν
, κ = ±3,±1. (1.53)

However, it is not so for fλ0±. Indeed, to find the amplitude fλ0± one need use the values of S(λ),
B(λ) and C(λ). Due to (1.38) we have[

S(λ)

]
ν

=
[
S(−λ)

]
ν
,
[
B(λ)

]
ν

=
[
B(−λ)

]
ν
,
[
C(λ)

]
ν

=
[
C(−λ)

]
ν
. (1.54)

Consequently[
fλ0±
]
ν

=
[
f−λ0±

]
ν
. (1.55)

Using Eqs. (1.53) and (1.55) we obtain[
aλκ
]
ν

=
[
a−λκ
]
ν

=
[
aλκ
]
ν

=
[
a−λκ
]
ν
, κ = ±3,±1 (1.56)[

aλκ
]
ν

=
[
a−λκ
]
ν
, κ = 0±, (1.57)

and accounting for (1.50)[
Aλκ
]
ν

=
[
A−λκ

]
ν

=
[
Aλκ
]
ν

=
[
A−λκ

]
ν
, κ = ±3,±1[

Aλκ
]
ν

=
[
A−λκ

]
ν
, κ = 0± .

For the partial cross sections (1.48) the following identities are hold:[
σ++
L,R

]
ν

=
[
σ+−
L,R

]
ν

=
[
σ−+L,R

]
ν

=
[
σ−−L,R

]
ν

=[
σ++
L,R

]
ν

=
[
σ+−
L,R

]
ν

=
[
σ−+L,R

]
ν

=
[
σ−−L,R

]
ν
,[

σ++
S

]
ν

=
[
σ−−S

]
ν
,
[
σ−−S

]
ν

=
[
σ++
S

]
ν
,[

σ+−
S

]
ν

=
[
σ−+S

]
ν

=
[
σ+−
S

]
ν

=
[
σ−+S

]
ν
.

(1.58)

4The explicit form of the amplitudes can be found in Ref. [5].
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Next (see Eq. (1.46))

[Σ++ +Σ−−]ν =
[
c+L
]2
ν

[
σ++
L

]
ν

+
[
c+R
]2
ν

[
σ++
R

]
ν

+
[
c+S
]2
ν

[
σ++
S

]
ν

+[
c−L
]2
ν

[
σ−−L

]
ν

+
[
c−R
]2
ν

[
σ−−R

]
ν

+
[
c−S
]2
ν

[
σ−−S

]
ν

(1.59)

Using the transition conditions (1.39) and (1.58)

[Σ++ +Σ−−]ν =
[
c+L
]2
ν

[
σ++
L

]
ν

+
[
c+R
]2
ν

[
σ++
R

]
ν

+
[
c+S
]2
ν

[
σ++
S

]
ν

+[
c−L
]2
ν

[
σ−−L

]
ν

+
[
c−R
]2
ν

[
σ−−R

]
ν

+
[
c−S
]2
ν

[
σ−−S

]
ν

=[
c−R
]2
ν

[
σ++
L

]
ν

+
[
c−L
]2
ν

[
σ++
R

]
ν

+
[
c−S
]2
ν

[
σ−−S

]
ν

+[
c+R
]2
ν

[
σ−−L

]
ν

+
[
c+L
]2
ν

[
σ−−R

]
ν

+
[
c+S
]2
ν

[
σ++
S

]
ν
. (1.60)

Using Minoo’s “recipe” (1.45) one finds

[Σ++ +Σ−−]ν =
[
c+L
]2
ν

[
σ++
L

]
ν

+
[
c+R
]2
ν

[
σ++
R

]
ν

+
[
c+S
]2
ν

[
σ++
S

]
ν

+[
c−L
]2
ν

[
σ−−L

]
ν

+
[
c−R
]2
ν

[
σ−−R

]
ν

+
[
c−S
]2
ν

[
σ−−S

]
ν

=[
c+R
]2
ν

[
σ++
L

]
ν

+
[
c+L
]2
ν

[
σ++
R

]
ν

+
[
c+S
]2
ν

[
σ++
S

]
ν

+[
c−R
]2
ν

[
σ−−L

]
ν

+
[
c−L
]2
ν

[
σ−−R

]
ν

+
[
c−S
]2
ν

[
σ−−S

]
ν
, (1.61)

what at first glance is different from Eq. (1.60), but again using the relations (1.58) we obtain

[Σ++ +Σ−−]ν =
[
c+R
]2
ν

[
σ++
L

]
ν

+
[
c+L
]2
ν

[
σ++
R

]
ν

+
[
c+S
]2
ν

[
σ++
S

]
ν

+[
c−R
]2
ν

[
σ−−L

]
ν

+
[
c−L
]2
ν

[
σ−−R

]
ν

+
[
c−S
]2
ν

[
σ−−S

]
ν

=[
c+R
]2
ν

[
σ−−L

]
ν

+
[
c+L
]2
ν

[
σ−−R

]
ν

+
[
c+S
]2
ν

[
σ−−S

]
ν

+[
c−R
]2
ν

[
σ++
L

]
ν

+
[
c−L
]2
ν

[
σ++
R

]
ν

+
[
c−S
]2
ν

[
σ++
S

]
ν
. (1.62)

It can be seen that Eqs. (1.60) and (1.62) are coincide. Thus differential cross section of
unpolarized lepton production (1.47) does not depend on what transition conditions is used.

Now, by applying transition conditions (1.39) and (1.58) we get:

[Σλλ′ ]ν =
[
cλL
]
ν

[
cλ
′

L

]
ν

[
σλλ

′

L

]
ν

+
[
cλR
]
ν

[
cλ
′

R

]
ν

[
σλλ

′

R

]
ν

+
[
cλS
]
ν

[
cλ
′

S

]
ν

[
σλλ

′

S

]
ν

=

λλ′
([
c−λR
]
ν

[
c−λ

′

R

]
ν

[
σλλ

′

L

]
ν

+
[
c−λL
]
ν

[
c−λ

′

L

]
ν

[
σλλ

′

R

]
ν

+
[
c−λS
]
ν

[
c−λ

′

S

]
ν

[
σ−λ−λ

′

S

]
ν

)
.

(1.63)

But, according to Eqs. (1.45), Minoo’s “recipe” gives different (in fact wrong) result:

[Σλλ′ ]ν =
[
cλL
]
ν

[
cλ
′

L

]
ν

[
σλλ

′

L

]
ν

+
[
cλR
]
ν

[
cλ
′

R

]
ν

[
σλλ

′

R

]
ν

+
[
cλS
]
ν

[
cλ
′

S

]
ν

[
σλλ

′

S

]
ν
, i.e.

[Σλλ′ ]ν,Minoo’s rule = +1
([
cλR
]
ν

[
cλ
′

R

]
ν

[
σλλ

′

L

]
ν

+
[
cλL
]
ν

[
cλ
′

L

]
ν

[
σλλ

′

R

]
ν

+
[
cλS
]
ν

[
cλ
′

S

]
ν

[
σλλ

′

S

]
ν

)
.

Now let us consider the case of the ν 7→ ν transition for the differential cross section of
single pion production derived in Refs. [2,3]:

dσ(νN → lNπ)

dQ2dWdΩπ
=
G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
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∣∣∣CL−(F̃Lλ2λ1(θ, φ)− G̃Lλ2λ1(θ, φ)) + CR−(F̃Rλ2λ1(θ, φ)− G̃Rλ2λ1(θ, φ))+

C−(F̃−λ2λ1(θ, φ)− G̃−λ2λ1(θ, φ))
∣∣∣2

+
∣∣∣CL+(F̃Lλ2λ1(θ, φ)− G̃Lλ2λ1(θ, φ)) + CR+(F̃Rλ2λ1(θ, φ)− G̃Rλ2λ1(θ, φ))+

C+(F̃+
λ2λ1

(θ, φ)− G̃+
λ2λ1

(θ, φ))
∣∣∣2}. (1.64)

First, we suppose, that the amplitudes F̃ λk
λ2λ1

(θ, φ) and G̃λk
λ2λ1

(θ, φ) correspond only to the reso-
nance case. Using formulas from Table 1.1 and transition relations (1.53) and (1.55), we can
find how the amplitudes should be transformed when we want to calculate the cross sections
for antineutrino:[

F̃L
λ2λ1

]
ν
−
[
G̃L
λ2λ1

]
ν

=
[
F̃L
λ2λ1

]
ν
−
[
G̃L
λ2λ1

]
ν
,
[
F̃R
λ2λ1

]
ν
−
[
G̃R
λ2λ1

]
ν

=
[
F̃R
λ2λ1

]
ν
−
[
G̃R
λ2λ1

]
ν
,[

F̃+
λ2λ1

]
ν
−
[
G̃+
λ2λ1

]
ν

=
[
F̃−λ2λ1

]
ν
−
[
G̃−λ2λ1

]
ν
,
[
F̃−λ2λ1

]
ν
−
[
G̃−λ2λ1

]
ν

=
[
F̃+
λ2λ1

]
ν
−
[
G̃+
λ2λ1

]
ν
.

(1.65)

For example, it is easy to check that[
F̃L

1
2

1
2

]
ν
−
[
G̃L

1
2

1
2

]
ν

=
∑
j

2j + 1√
2
Dj(R)

[
fλ+3(R)

]
ν
dj3

2
1
2

(θ)e−2iφ =

∑
j

2j + 1√
2
Dj(R)

[
fλ+3(R)

]
ν
dj3

2
1
2

(θ)e−2iφ =
[
F̃L

1
2

1
2

]
ν
−
[
G̃L

1
2

1
2

]
ν
,

[
F̃−1

2
1
2

]
ν
−
[
G̃−1

2
1
2

]
ν

= +
|k|√
Q2

∑
j

2j + 1√
2
Dj(R)

[
f
(−)
0− (R)

]
ν
dj1

2
1
2

(θ)e−iφ =

+
|k|√
Q2

∑
j

2j + 1√
2
Dj(R)

[
f
(+)
0− (R)

]
ν
dj1

2
1
2

(θ)e−iφ =
[
F̃+

1
2

1
2

]
ν
−
[
G̃+

1
2

1
2

]
ν
,

etc. Applying the transition relations (1.43) to Eq. (1.64) one gets:

dσ(νN → lNπ)

dQ2dWdΩπ
=
G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
∣∣∣ [CL−]ν ([F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CR−

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C−]ν

([
F̃−λ2λ1(θ, φ)

]
ν
−
[
G̃−λ2λ1(θ, φ))

]
ν

) ∣∣∣2+∣∣∣ [CL+

]
ν

([
F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CR+

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C+]ν

([
F̃+
λ2λ1

(θ, φ)
]
ν
−
[
G̃+
λ2λ1

(θ, φ))
]
ν

) ∣∣∣2} =

G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
∣∣∣− [CR+

]
ν

([
F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
−
[
CL+

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C+]ν

([
F̃+
λ2λ1

(θ, φ)
]
ν
−
[
G̃+
λ2λ1

(θ, φ))
]
ν

) ∣∣∣2+
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∣∣∣ [CR−]ν ([F̃Lλ2λ1(θ, φ)
]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CL−

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
−

[C−]ν

([
F̃−λ2λ1(θ, φ)

]
ν
−
[
G̃−λ2λ1(θ, φ))

]
ν

) ∣∣∣2} =

G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
∣∣∣ [CR+

]
ν

([
F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CL+

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
−

[C+]ν

([
F̃+
λ2λ1

(θ, φ)
]
ν
−
[
G̃+
λ2λ1

(θ, φ))
]
ν

) ∣∣∣2+∣∣∣ [CR−]ν ([F̃Lλ2λ1(θ, φ)
]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CL−

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
−

[C−]ν

([
F̃−λ2λ1(θ, φ)

]
ν
−
[
G̃−λ2λ1(θ, φ))

]
ν

) ∣∣∣2}. (1.66)

If we use the transition relations (1.44), we get

dσ(νN → lNπ)

dQ2dWdΩπ
=
G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
∣∣∣ [CL−]ν ([F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CR−

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C−]ν

([
F̃−λ2λ1(θ, φ)

]
ν
−
[
G̃−λ2λ1(θ, φ))

]
ν

) ∣∣∣2+∣∣∣ [CL+

]
ν

([
F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CR+

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C+]ν

([
F̃+
λ2λ1

(θ, φ)
]
ν
−
[
G̃+
λ2λ1

(θ, φ))
]
ν

) ∣∣∣2}
G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
∣∣∣ [CR−]ν ([F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CL−

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C−]ν

([
F̃−λ2λ1(θ, φ)

]
ν
−
[
G̃−λ2λ1(θ, φ))

]
ν

) ∣∣∣2+∣∣∣ [CR+

]
ν

([
F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CL+

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C+]ν

([
F̃+
λ2λ1

(θ, φ)
]
ν
−
[
G̃+
λ2λ1

(θ, φ))
]
ν

) ∣∣∣2}. (1.67)

We see that Eqs. (1.66) and (1.67) differ in sign of the term
[
F̃±λ2λ1(θ, φ)

]
ν
−
[
G̃±λ2λ1(θ, φ))

]
ν
.

1.2.3 Last update of the MK model

Minoo recently suggested the new transitions rules:[
j?λ0
]
ν

= − λ
[
j?−λ0

]
ν
,[

j?λx
]
ν

= + λ
[
j?−λx

]
ν
,[

j?λy
]
ν

= − λ
[
j?−λy

]
ν
,[

j?λz
]
ν

= − λ
[
j?−λz

]
ν
,

(1.68)
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from which, as she stated in her note, it follows:

[CLλ ]ν = −λ
[
CR−λ

]
ν
, [CRλ ]ν = −λ

[
CL−λ

]
ν
, [CSλ ]ν =

[
CS−λ

]
ν
. (1.69)

It follows from (1.68) and (1.69)

[
Q?(λ)

]
ν

= −λ
[
Q?(−λ)

]
ν
,
[
ν?(λ)
]
ν

= −λ
[
ν?(−λ)

]
ν
,[

S(λ)

]
ν

= −λ
[
S(−λ)

]
ν
,
[
B(λ)

]
ν

= −λ
[
B(−λ)

]
ν
,
[
C(λ)

]
ν

= −λ
[
C(−λ)

]
ν
,[

fλ0±
]
ν

= −λ
[
f−λ0±

]
ν
,[

F̃L
λ2λ1

]
ν
−
[
G̃L
λ2λ1

]
ν

=
[
F̃L
λ2λ1

]
ν
−
[
G̃L
λ2λ1

]
ν
,
[
F̃R
λ2λ1

]
ν
−
[
G̃R
λ2λ1

]
ν

=
[
F̃R
λ2λ1

]
ν
−
[
G̃R
λ2λ1

]
ν
,[

F̃+
λ2λ1

]
ν
−
[
G̃+
λ2λ1

]
ν

= −
([
F̃−λ2λ1

]
ν
−
[
G̃−λ2λ1

]
ν

)
,[

F̃−λ2λ1

]
ν
−
[
G̃−λ2λ1

]
ν

=
[
F̃+
λ2λ1

]
ν
−
[
G̃+
λ2λ1

]
ν
,[

σ++
L,R

]
ν

=
[
σ+−
L,R

]
ν

=
[
σ−+L,R

]
ν

=
[
σ−−L,R

]
ν

=[
σ++
L,R

]
ν

=
[
σ+−
L,R

]
ν

=
[
σ−+L,R

]
ν

=
[
σ−−L,R

]
ν
,[

σ++
S

]
ν

=
[
σ−−S

]
ν
,
[
σ−−S

]
ν

=
[
σ++
S

]
ν
,[

σ+−
S

]
ν

=
[
σ−+S

]
ν

= −
[
σ+−
S

]
ν

= −
[
σ−+S

]
ν

Again, this rules are not coincide with (1.33) and (1.39) and as before one can show that
the sum is coincide with (1.60):

[Σ++ +Σ−−]ν =
[
c+L
]2
ν

[
σ++
L

]
ν

+
[
c+R
]2
ν

[
σ++
R

]
ν

+
[
c+S
]2
ν

[
σ++
S

]
ν

+[
c−L
]2
ν

[
σ−−L

]
ν

+
[
c−R
]2
ν

[
σ−−R

]
ν

+
[
c−S
]2
ν

[
σ−−S

]
ν

=[
c−R
]2
ν

[
σ++
L

]
ν

+
[
c−L
]2
ν

[
σ++
R

]
ν

+
[
c−S
]2
ν

[
σ−−S

]
ν

+[
c+R
]2
ν

[
σ−−L

]
ν

+
[
c+L
]2
ν

[
σ−−R

]
ν

+
[
c+S
]2
ν

[
σ++
S

]
ν
. (1.70)

However the value of

[Σλλ′ ]ν =
[
cλL
]
ν

[
cλ
′

L

]
ν

[
σλλ

′

L

]
ν

+
[
cλR
]
ν

[
cλ
′

R

]
ν

[
σλλ

′

R

]
ν

+
[
cλS
]
ν

[
cλ
′

S

]
ν

[
σλλ

′

S

]
ν

=

λλ′
([
c−λR
]
ν

[
c−λ

′

R

]
ν

[
σλλ

′

L

]
ν

+
[
c−λL
]
ν

[
c−λ

′

L

]
ν

[
σλλ

′

R

]
ν
−
[
c−λS
]
ν

[
c−λ

′

S

]
ν

[
σ−λ−λ

′

S

]
ν

)
(1.71)

is not coincide with (1.63).

dσ(νN → lNπ)

dQ2dWdΩπ
=
G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
∣∣∣ [CL−]ν ([F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CR−

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C−]ν

([
F̃−λ2λ1(θ, φ)

]
ν
−
[
G̃−λ2λ1(θ, φ))

]
ν

) ∣∣∣2+∣∣∣ [CL+

]
ν

([
F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CR+

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+
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[C+]ν

([
F̃+
λ2λ1

(θ, φ)
]
ν
−
[
G̃+
λ2λ1

(θ, φ))
]
ν

) ∣∣∣2} =

G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
∣∣∣ [CR+

]
ν

([
F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CL+

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C+]ν

([
F̃+
λ2λ1

(θ, φ)
]
ν
−
[
G̃+
λ2λ1

(θ, φ))
]
ν

) ∣∣∣2+∣∣∣− [CR−]ν ([F̃Lλ2λ1(θ, φ)
]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
−
[
CL−

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
−

[C−]ν

([
F̃−λ2λ1(θ, φ)

]
ν
−
[
G̃−λ2λ1(θ, φ))

]
ν

) ∣∣∣2}.
Finally we obtain:[

dσ(νN → lNπ)

dQ2dWdΩπ

]
Minoo’s transition rule

=
G2
F

2

1

(2π)4
|q|
4

Q2

(kL)2

∑
λ2,λ1

{
∣∣∣ [CR+

]
ν

([
F̃Lλ2λ1(θ, φ)

]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CL+

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C+]ν

([
F̃+
λ2λ1

(θ, φ)
]
ν
−
[
G̃+
λ2λ1

(θ, φ))
]
ν

) ∣∣∣2+∣∣∣ [CR−]ν ([F̃Lλ2λ1(θ, φ)
]
ν
−
[
G̃Lλ2λ1(θ, φ))

]
ν

)
+
[
CL−

]
ν

([
F̃Rλ2λ1(θ, φ)

]
ν
−
[
G̃Rλ2λ1(θ, φ))

]
ν

)
+

[C−]ν

([
F̃−λ2λ1(θ, φ)

]
ν
−
[
G̃−λ2λ1(θ, φ))

]
ν

) ∣∣∣2}. (1.72)

This result is not coincide with (1.66); the difference is in the two signs marked in red.

1.2.4 Conclusions
Ultimately, Minoo’s “recipe” for the ν 7→ ν transition gives correct result only for the double differential
cross sections, like dσ/dWdQ2. For the cross section dσ/dQ2dWdΩπ and for the polarization density
matrix her “recipe” does not work. The same situation with the last updated rules.

Let’s emphasize that calculation of the polarization matrix is by no means an academic issue be-
cause in the long-awaited high-precision experiments with atmospheric and astrophysical neutrinos (like
Hyper-Kamiokande, DUNE, PINGU, ORCA) and in possible future dedicated accelerator experiments,
one will need to perform detailed calculations of production and decay of polarized τ -leptons in the
detector, Earth, atmosphere, and astrophysical sources. In fact, this was one of the main goals in gen-
eralizing the RS model (KLN, BS, etc.).5 We think, this option will certainly need to be added to GENIE.
So we plan to return to this problem in the future.

Considering that the transition rules (1.39) are consequence of the leptonic current properties only,
they are valid for any neutrino-induced CC process. The coincidence of the cross section dσ/dWdQ2 ob-
tained by using this rules with Minoo’s one is due to underlying symmetry of the Rein-Sehgal model [5].
This may not be so in other models or after some modifications of the KLN-BS or MK models. In par-
ticular, since in the MK-model, the resonance amplitudes are coherently added to the non-resonance
ones, it is not in general obvious that in this case even the cross section dσ/dWdQ2 calculated by using
Minoo’s prescription will remain correct.

5More details can be found in Refs. [8,10].
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We would like to remind that the values F̃ λkλ2,λ1(θ, φ) and G̃λk(p)λ2,λ1
(θ, φ), which we consider as correct,

are different from Minoo’s ones (see Tables 1.1 and 1.2), but all derived formulas, in particular Eq. (1.72),
are generic. This difference could either enhance or partially offset the discrepancy between Eqs. (1.66)
and (1.72).

Let us also note that agreement of the MK model predictions with the experimental data cannot con-
firm or disconfirm the ν 7→ ν transition rules just because the currently available data are too fragmentary
and uncertain and are either slowly sensible or (as the single and double-differential cross sections) fully
insensible to the differences in the two versions of the rules under consideration. Moreover, after refitting
the MK model parameters, the agreement with the more detailed data may seem to be quite satisfactory
even with wrong formulas. But the predictive power of the model will be under big question. So we
suggest to use the ν 7→ ν transition rules derived in Ref. [8] and reproduced above... or to refute our
derivations.
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Chapter 2

Fixed problems, bugs and mistakes

2.1 Incorrect phase factors for resonance and background
amplitudes

The expression for the differential cross section is obtained assuming incorrect phase factors for reso-
nance and background amplitudes in the C++ code provided by Minoo. The proof of this fact can be
founded in accompanying Wolfram Mathematica notebook XSec MK Diff.nb with all explanatory com-
ments. In brief, the phase factors of the amplitudes F̃ eLλ2,λ1(θ, φ) and F̃ eRλ2,λ1(θ, φ) are mixed up. This lead
to incorrect expression for the cross section.

There is a similar problem in the latest version of Minoo’s code. We checked differential cross section
only for one channel (MK mode1.cc) and found that it is wrong (see accompanying file XSec MK Diff v.2.nb),
but we didn’t check other channels yet.

2.2 Incorrect helicity amplitudes
The helicity amplitudes:

• for resonance S11(1650) instead of

f1 = sqrt(1./24.)*L*(R1_minus + 4*sin2Wein*R1_V);

should be

f1 = sqrt(1./24.)*L*(R1_plus + 4*sin2Wein*R1_V);

• for resonance P13(1720) instead of

f_1 = -sqrt(27./40.)*L*T2_minus +

sqrt(5./12.)*L*L*(R2_minus+2.*sin2Wein*(4./5.)*R2_V);

f1 = +sqrt(27./40.)*L*T2_plus -

sqrt(5./12.)*L*L*(R2_plus +2.*sin2Wein*(4./5.)*R2_V);

f3 = -sqrt(9. /40.)*L*T2_plus;

f0_plus = -sqrt(3./20.)*L*L*S2_KLM_minus +
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sqrt(5./12.)*L*(L*C2_minus-5.*B2_minus);

f0_minus = sqrt(3./20.)*L*L*S2_KLM_minus +

sqrt(5./12.)*L*(L*C2_minus-5.*B2_minus);

should be

f_1 = sqrt(27./40.)*L*T2_minus +

sqrt(5./12.)*L*L*(R2_minus+2.*sin2Wein*(4./5.)*R2_V);

f1 = -sqrt(27./40.)*L*T2_plus -

sqrt(5./12.)*L*L*(R2_plus +2.*sin2Wein*(4./5.)*R2_V);

f3 = sqrt(9. /40.)*L*T2_plus;

f0_plus = sqrt(3./20.)*L*L*S2_KLM_minus +

sqrt(5./12.)*L*(L*C2_minus-5.*B2_minus);

f0_minus = -sqrt(3./20.)*L*L*S2_KLM_minus +

sqrt(5./12.)*L*(L*C2_minus-5.*B2_minus);

• for resonance F15(1680) instead of

f3 = sqrt(9./10.)*L*T2_plus;

should be

f3 = sqrt(9./10.)*L*T2_plus;

defined in the file MK imode7.cc (latest code version) are wrong (see Ref. [6]).

2.3 Erroneous dynamical form factor B
In the MK-model the wrong form factor B was used (see Minoo’s erratum to Ref. [10]). It was fixed in
the file mk imode1 new.cc and mk imode4 new.cc.

2.4 Mistaken cross-section formula for NC-processes in the
code

The values Fem zero minus is not used in the expression for the cross section. As a result some
parts of the expression for the cross section are incorrect, for example, instead of lines 1003-1006 from
mk imode4 new.cc:

+ pow( ((1. - 2.*sin2Wein)*F_zero_minus11 - G_zero_minus11 + C3*sum3Re_0M11 + C1*sum1Re_0M11) , 2)

+ pow( ((1. - 2.*sin2Wein)*F_zero_minus_11 - G_zero_minus_11 + C3*sum3Re_0M_11 + C1*sum1Re_0M_11) , 2)

+ pow( ((1. - 2.*sin2Wein)*F_zero_minus1_1 - G_zero_minus1_1 + C3*sum3Re_0M1_1 + C1*sum1Re_0M1_1) , 2)

+ pow( ((1. - 2.*sin2Wein)*F_zero_minus_1_1 - G_zero_minus_1_1 + C3*sum3Re_0M_1_1+ C1*sum1Re_0M_1_1) , 2)

should be the following lines:
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+ pow( ((1. - 2.*sin2Wein)*F_zero_minus11 - G_zero_minus11 - 4.*sin2Wein*Fem_zero_minus11

+ C3*sum3Re_0M11 + C1*sum1Re_0M11 ) , 2)

+ pow( ((1. - 2.*sin2Wein)*F_zero_minus_11 - G_zero_minus_11 - 4.*sin2Wein*Fem_zero_minus_11

+ C3*sum3Re_0M_11 + C1*sum1Re_0M_11) , 2)

+ pow( ((1. - 2.*sin2Wein)*F_zero_minus1_1 - G_zero_minus1_1 - 4.*sin2Wein*Fem_zero_minus1_1

+ C3*sum3Re_0M1_1 + C1*sum1Re_0M1_1) , 2)

+ pow( ((1. - 2.*sin2Wein)*F_zero_minus_1_1 - G_zero_minus_1_1- 4.*sin2Wein*Fem_zero_minus_1_1

+ C3*sum3Re_0M_1_1+ C1*sum1Re_0M_1_1), 2

The error has been fixed in the most recent version of the file: mk imode4 new.cc.

2.5 Incorrect Cj-signs
The Cj-signs in the following fragments of code, which are denoted as Jsgn, are wrong, because for the
amplitudes F̃ eR− 1

2
,λ1

(θ, φ)) (denoted as HV (real|Im)P 1(1| 1)) the corresponding signs are always positive

(see Table 7 from Ref. [6]).

const int Jsgn[nRes] = {1,-1,-1, 1, 1, 1, 1,-1,-1,-1,-1, 1,-1,-1, 1, 1, 1};

HV_realP11[i] = sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_real[i]*fV_1;

HV_realP_11[i] = -sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_real[i]*fV_1*Jsgn[i];

HV_realP1_1[i] = -sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_real[i]*fV_3;

HV_realP_1_1[i] = sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_real[i]*fV_3*Jsgn[i];

HV_ImP11[i] = sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_Im[i]*fV_1;

HV_ImP_11[i] = -sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_Im[i]*fV_1*Jsgn[i];

HV_ImP1_1[i] = -sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_Im[i]*fV_3;

HV_ImP_1_1[i] = sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_Im[i]*fV_3*Jsgn[i];

HA_realP11[i] = sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_real[i]*fV_1;

HA_realP_11[i] = -sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_real[i]*fV_1*Jsgn[i];

HA_realP1_1[i] = -sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_real[i]*fV_3;

HA_realP_1_1[i] = sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_real[i]*fV_3*Jsgn[i];

HA_ImP11[i] = sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_Im[i]*fV_1;

HA_ImP_11[i] = -sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_Im[i]*fV_1*Jsgn[i];

HA_ImP1_1[i] = -sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_Im[i]*fV_3;

HA_ImP_1_1[i] = sqrt(2.)*JP[i]*Dsgn[i]*kapa[i]*Vf_BW_Im[i]*fV_3*Jsgn[i];

It was fixed in the file mk imode1 erratum.cc.

2.6 Problem with multipole expansion of some amplitudes
in the code

The multipole expansion of the following amplitudes F̃+
res− 1

2
, 1
2

and F̃−
res− 1

2
, 1
2

is definitely incorrect as they

were defined in the first version of Erratum (this is not the same definition as in paper [3]):

F̃−
res− 1

2
, 1
2

=
|k|√
Q2

∑
j

2j + 1√
2
Dj(R)f

V (−)
0− (R)dj− 1

2
1
2

(θ),

F̃+
res− 1

2
, 1
2

=
|k|√
Q2

∑
j

2j + 1√
2
Dj(R)f

V (−)
0− (R)dj− 1

2
1
2

(θ).

(2.1)
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But in the MK-code they are defined different way. For example, in line 823 of the file
mk imode1 new.cc:

double sum3Re_0M_11 = HA0_realM_11[0] *d31_1 + HA0_realM_11[4]*d11_1 +

HA0_realM_11[9] *d31_1 + HA0_realM_11[12]*d51_1+

HA0_realM_11[13]*d11_1 + HA0_realM_11[14]*d31_1+

HA0_realM_11[15]*d71_1 + HA0_realM_11[16]*d31_1;

where dj1 1 denotes dj1
2
,− 1

2

. But, according to Eq. (1.15), dj1
2
,− 1

2

= −dj− 1
2
, 1
2

. So the above line should be

rewritten as follows:

double sum3Re_0M_11 = -(HA0_realM_11[0] *d31_1 + HA0_realM_11[4]*d11_1 +

HA0_realM_11[9] *d31_1 + HA0_realM_11[12]*d51_1+

HA0_realM_11[13]*d11_1 + HA0_realM_11[14]*d31_1+

HA0_realM_11[15]*d71_1 + HA0_realM_11[16]*d31_1);

Lines 828, 843, 848, 864, 869, 884, and 889 should be corrected in the same way.
The mistake has been fixed in the second version of Erratum [4] but appears again in the latest ver-

sions of erratum for paper [3] and code. However, it is unclear how one should fix it (see section 1.1.4).

2.7 Expressions for EM-amplitudes contains mistake
There is an error in the lines 207–210 of the file mk imode4 new.cc, instead of C S plus square it should
be C S minus square:

double Fem_zero_minus11 = (1./sqrt(C_S_plus_square))*sqrt((1+t)/2.)*(k_0*eps_z_L - abs_mom_k*eps_zero_L)*(sFem_5 + sFem_6);

double Fem_zero_minus_11 = -(1./sqrt(C_S_plus_square))*sqrt((1-t)/2.)*(k_0*eps_z_L - abs_mom_k*eps_zero_L)*(sFem_5 - sFem_6);

double Fem_zero_minus1_1 = -(1./sqrt(C_S_plus_square))*sqrt((1-t)/2.)*(k_0*eps_z_L - abs_mom_k*eps_zero_L)*(sFem_5 - sFem_6);

double Fem_zero_minus_1_1 = -(1./sqrt(C_S_plus_square))*sqrt((1+t)/2.)*(k_0*eps_z_L - abs_mom_k*eps_zero_L)*(sFem_5 + sFem_6);

2.8 Error in the dynamical amplitudes for resonanceD13(1520)

The error is in lines 448, 449 of the file mk imode6.cc:

fV_1 = -sqrt(3./2.)*(-T1_V[2]+2.*sin2Wein*T1_V[2])+sqrt(4./3.)*L*(-R1_V[2]+3.*sin2Wein*R1_V[2]);

fV1 = -sqrt(3./2.)*(-T1_V[2]+2.*sin2Wein*T1_V[2])+sqrt(4./3.)*L*(-R1_V[2]+3.*sin2Wein*R1_V[2]);

The corrected lines should be [5]:

fV_1 = -sqrt(3./2.)*(-T1_V[2]+2.*sin2Wein*T1_V[2])+sqrt(4./3.)*L*(-R1_V[2]+sin2Wein*R1_V[2]);

fV1 = -sqrt(3./2.)*(-T1_V[2]+2.*sin2Wein*T1_V[2])+sqrt(4./3.)*L*(-R1_V[2]+sin2Wein*R1_V[2]);

2.9 Wrong sign for As-values in the code
The error is in lines 263–268 of mk imode6.cc and mk imode16.cc:

double As_1=

-(1./2.1./sqrt(2.))*(g_A/f_pi)*Gs_A*FA_cut*(2.*M/(m_pi*m_pi - 2.*q_0*p_10

- 2.*abs_mom_q*abs_mom_k*t))-sqrt(2.)*(g_A/f_pi)*Gs_A*FA_cut*(M/(W*W - M*M)));

The corrected lines in all files mk imode4.cc, mk imode5.cc, mk imode7.cc, mk imode14.cc, mk imode15.cc
and mk imode17.cc for other channels are:
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double As_1=

(1./2.1./sqrt(2.))*(g_A/f_pi)*Gs_A*FA_cut*(2.*M/(m_pi*m_pi - 2.*q_0*p_10

- 2.*abs_mom_q*abs_mom_k*t))-sqrt(2.)*(g_A/f_pi)*Gs_A*FA_cut*(M/(W*W - M*M)));

which follows from isospin symmetry.
The problem remains in the latest version of the code.

2.10 Mistype in a formula for cross section
A mistype is in line 1201 of the file mk imode2.cc, namely, the amplitude sum1Re0PMM should be
instead of sum1Re0MMM. For more details see the accompanying Wolfram Mathematica notebook
XSec MK Diff.nb.

2.11 Problem with phase factors for resonance amplitudes
The phase factors exp [nφ] of the resonance amplitudes in Table 3 in Ref. [3] are incorrect. They should
be the same as for the background contribution presented in Table 6 of the same paper. This mistake
has been fixed in Ref. [4].

2.12 The values of some resonance parameters are incor-
rect

The values of resonance masses defined in the penultimate version of the file mkcons.h are wrong:

const double MR[17] = {1.232, 1.440, 1.515, 1.53, 1.57,

1.61, 1.65, 1.675, 1.685, 1.72,

1.71, 1.71, 1.72, 1.88, 1.9, 1.92, 1.93};

because they should be

const double MR[17] = {1.232, 1.440, 1.515, 1.530, 1.610,

1.650, 1.675, 1.685, 1.720, 1.710,

1.710, 1.720, 1.880, 1.900, 1.920, 1.930, 1.570};

according to the order in which resonance amplitudes are calculated in the files MK imode1.cc–MK imode17.cc:

P_{33}(1232) **** IBLOCK=0 ****

P_{11}(1440) **** IBLOCK=1 ****

D_{13}(1520) **** IBLOCK=2 ****

S_{11}(1535) **** IBLOCK=3 ****

S_{31}(1620) **** IBLOCK=4 ****

S_{11}(1650) **** IBLOCK=5 ****

D_{15}(1675) **** IBLOCK=6 ****

F_{15(1680) **** IBLOCK=7 ****

D_{13}(1700) **** IBLOCK=8 ****

D_{33}(1700) **** IBLOCK=9 ****

P_{11}(1710) **** IBLOCK=10 ****
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P_{13}(1720) **** IBLOCK=11 ****

F_{35}(1905) **** IBLOCK=12 ****

P_{31}(1910) **** IBLOCK=13 ****

P_{33}(1920) **** IBLOCK=14 ****

F_{37}(1950) **** IBLOCK=15 ****

P_{33}(1600) **** IBLOCK=16 ****

The same is also true for the widths and branching ratios. However such inputs as a signs of the
angular Clebsch–Gordan coefficients, angular momentum and total angular momentum projections are
defined correctly. Since it is not quite clear which set of resonance amplitudes is used in the latest
version of the code, it becomes problematic to determine whether the values of σD is correct or not
since they differ in the previous and latest code version (see also section 1.1.4). This bug has been fixed
in the latest version of code.

2.13 Value of κ̂-factor is incorrect
Recall that the MK model is essentially based on Rein model [6]. It is obvious from comparison of Eqs.
(4.15) in Ref. [1] and (40a) in Ref. [6] that the κ-factor should be replaced by κ̂, which is defined after
Eq. (39c) in Ref. [6].

To calculate the κ̂-factor one needs know the ratio of isospin coefficients

ζ =
cI
aI
,

where aI and cI are defined in Eqs. (8) and (24) of Rein’s paper [6]. Note, that the isospin coefficients
aI and cI1 are given in the explicit form only for several channel in Ref. [6].

As we stated in a previous version of this report: “It is therefore necessary to calculate them for other
channels. The absence of this factor leads to very significant diversities with the original theory.” But
in fact it is, fortunately, not so, because it reduced in the final formula for cross section. So the explicit
form of this factor is only of academic interest, and is not needed for practical calculations of the cross
sections.

1We want to note here, that in Rein’s paper [6], the coefficient cI for the decay channel νp → `pπ+ is equal to
1, while in Ref. [5] it equal to

√
3. The origin of the factor

√
3 in the Rein-Sehgal paper is clear (it arises due to the

isospin symmetry), but it is not clear (for us!) why it is absent in Rein’s paper. Maybe somebody can clarify this
question for us?
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