HF-CRPA CCQE pull request

- Submitted by Stephen Dolan, Generator <u>pull request #271</u>
 - Implementation described in Phys. Rev. D 106, 073001 (2022)
 - Builds upon SuSAv2 infrastructure, not many code changes
 - Reviewed by Steven Gardiner, in good shape
- HF-CRPA model (CCQE only)
 - Nuclear response calculated using Hartree-Fock mean field
 - Corrections for long-range correlations handled using Continuum
 Random Phase Approximation
 - Different flavor of RPA compared to Valencia
- Nonrelativistic, so recommendation is to interpolate to SuSAv2 at high momentum transfer

Code details

- Biggest change is the addition of many new hadronic tensor tables (and minor code changes to switch between them)
 - Nuclear response functions on a grid of (ω, q)
 - Same format as Valencia, SuSAv2
 - -See pull request #271 for the list of tables
- New configurations of HybridXSecAlgorithm allow use of the new tables
 - HybridXSecAlgorithm used in SuSAv2 implementation, delegates to Llewellyn-Smith for a free nucleon
- SuSAv2QELPXSec adjusted to also handle CRPA-flavor QE models

Adding HF-CRPA to a CMC

- All of this should be transparent to users, existing CMCs are expected to "just work"
- Only change needed to enable a CRPA-flavor QE model is in the CMC-specific ModelConfiguration.xml file:

```
<param type="alg" name="XSecModel@genie::EventGenerator/QEL-
CC"> genie::HybridXSecAlgorithm/CRPASuSAv2Hybrid-QEL </param>
```

- No new CMCs like this are added in the pull request
 - Add one for CRPA/SuSAv2 hybrid QE, otherwise the same as the SuSAv2 configuration? (G21_11a_00_000)
 - If so, how should we name it?

Merging status

- I've reviewed the code and think it looks reasonable
 - Changes look more extensive than they actually are
 - Mostly new tables and plumbing to manage them
 - Builds fine on my laptop, I can run CRPA-SuSAv2 hybrid events without trouble
- I would like to do a few more quick checks of existing models based on the same machinery
 - If I run plain SuSAv2 in master vs. the pull request, do I get the same physics? For both neutrinos and electrons
- Assuming those go well, the pull request is merge-ready as far as I'm concerned